Changement climatique et intrants agricoles en Afrique avec un accent particulier sur les variétés tolérantes à la sécheresse

Cas de la zone semi-aride de l’Afrique de l’Ouest

2013
TABLE DES MATIERES

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>LISTE DES TABLEAUX</td>
<td>iv</td>
</tr>
<tr>
<td>LISTE DES FIGURES</td>
<td>v</td>
</tr>
<tr>
<td>SIGLES ET ABBREVIATIONS</td>
<td>vi</td>
</tr>
<tr>
<td>REMERCIEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>AVANT PROPOS</td>
<td>xi</td>
</tr>
<tr>
<td>RESUME DU RAPPORT</td>
<td>xiii</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>I. APPROCHE METHODOLOGIQUE</td>
<td>8</td>
</tr>
<tr>
<td>1.1 Zone de l’étude</td>
<td>8</td>
</tr>
<tr>
<td>1.2 Méthodologie</td>
<td>11</td>
</tr>
<tr>
<td>II. CAS D’ETUDE DE LA ZONE SEMI ARIDE DE L’AFRIQUE DE L’OUEST</td>
<td>12</td>
</tr>
<tr>
<td>2.1 Nigeria</td>
<td>12</td>
</tr>
<tr>
<td>2.2 Niger</td>
<td>15</td>
</tr>
<tr>
<td>III. VARIETES CULTIVEES DANS LES REGIONS SEMI-ARIDES DE L’AFRIQUE DE L’OUEST</td>
<td>21</td>
</tr>
<tr>
<td>IV. TECHNIQUES DE COLLECTE DE L’EAU ET DE GESTION DES TERRES</td>
<td>49</td>
</tr>
<tr>
<td>CONCLUSION</td>
<td>53</td>
</tr>
<tr>
<td>RESUME DES CONCLUSIONS DE L’ATELIER DE VALIDATION</td>
<td>57</td>
</tr>
<tr>
<td>REFERENCES BIBLIOGRAPHIQUES</td>
<td>61</td>
</tr>
<tr>
<td>ANNEXES</td>
<td>63</td>
</tr>
</tbody>
</table>
LISTE DES TABLEAUX

Pages

TABLEAU 1 : Variétés améliorées de mil cultivées au Burkina Faso, Niger et Nigeria... 23

TABLEAU 2 : Variétés améliorées de sorgho cultivées au Niger et au Nigeria.. 30

TABLEAU 3 : Variétés améliorées de maïs cultivées au Nigeria, Mali, Niger .. 35

TABLEAU 4 : Variétés améliorées de riz cultivées au Niger et au Nigeria.... 38

TABLEAU 5 : Variétés améliorées de niébé cultivées au Niger et Nigeria.... 40

TABLEAU 6 : Variétés améliorées d’arachide adaptées au Niger.............. 43

TABLEAU 7 : Variétés améliorées de sésame adaptées au Niger 46

TABLEAU 8 : Variétés améliorées de manioc cultivées au Nigeria et au Niger .. 48
LISTE DES FIGURES

<table>
<thead>
<tr>
<th>Carte</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARTE 1</td>
<td>Tendances des précipitations</td>
<td>4</td>
</tr>
<tr>
<td>CARTE 2</td>
<td>Tendances des températures</td>
<td>4</td>
</tr>
<tr>
<td>CARTE 3</td>
<td>Zones agro-écologiques de l’Afrique subsaharienne</td>
<td>10</td>
</tr>
<tr>
<td>CARTE 4</td>
<td>Pluviométrie et zones climatiques des régions semi-arides de l’Afrique de l’ouest</td>
<td>10</td>
</tr>
<tr>
<td>CARTE 5</td>
<td>Situation du Nigeria et du Niger en Afrique de l’Ouest</td>
<td>11</td>
</tr>
<tr>
<td>CARTE 6</td>
<td>Carte des zones agro-écologiques du Nigeria</td>
<td>12</td>
</tr>
<tr>
<td>CARTE 7</td>
<td>Carte des zones agro-écologiques du Niger</td>
<td>17</td>
</tr>
</tbody>
</table>
SIGLES ET ABREVIATIONS

<table>
<thead>
<tr>
<th>SIGLE</th>
<th>Abréviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFSTA</td>
<td>African Seed Trade Association</td>
</tr>
<tr>
<td>AGRHYMET</td>
<td>Centre Régional d’Agronomie, d’Hydraulique et de Météorologie</td>
</tr>
<tr>
<td>BOAD</td>
<td>Banque Ouest Africaine de Développement</td>
</tr>
<tr>
<td>CEDEAO</td>
<td>Communauté Economique des États de l’Afrique de l’Ouest</td>
</tr>
<tr>
<td>CIRAD</td>
<td>Centre de Coopération Internationale en Recherche Agronomique pour le Développement</td>
</tr>
<tr>
<td>CILSS</td>
<td>Comité Permanent Inter États de Lutte contre la Sécheresse dans le Sahel</td>
</tr>
<tr>
<td>CSA</td>
<td>Commissariat à la Sécurité Alimentaire</td>
</tr>
<tr>
<td>CSAO</td>
<td>Club du Sahel et de l’Afrique de l’Ouest</td>
</tr>
<tr>
<td>ECOWAP</td>
<td>Politique Agricole de la CEDEAO</td>
</tr>
<tr>
<td>FARM</td>
<td>Fondation pour l’agriculture et la Ruralité dans le Monde</td>
</tr>
<tr>
<td>FRDA</td>
<td>Fonds Régional de Développement Agricole</td>
</tr>
<tr>
<td>FAO</td>
<td>Organisation des Nations Unis pour l’alimentation et l’agriculture</td>
</tr>
<tr>
<td>FAOSTAT</td>
<td>Service des Statistiques Agricoles de la FAO</td>
</tr>
<tr>
<td>FIDA</td>
<td>Fonds International pour le Développement Agricole</td>
</tr>
<tr>
<td>GCRAI</td>
<td>Groupe Consultatif pour la Recherche Agricole Internationale</td>
</tr>
<tr>
<td>GIZ</td>
<td>Gesellschaft für Internationale Zusammenarbeit (GIZ)</td>
</tr>
<tr>
<td>GNIS</td>
<td>Groupement National Interprofessionnel des Semences</td>
</tr>
<tr>
<td>IER</td>
<td>Institut d’Économie Rurale</td>
</tr>
<tr>
<td>IFDC</td>
<td>Centre International pour la Fertilité des Sols et le Développement Agricole</td>
</tr>
<tr>
<td>ICRISAT</td>
<td>Institut international de recherche sur les cultures des zones tropicales semi-arides</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Name</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>INERA</td>
<td>Institut de l’Environnement et de recherche agricoles</td>
</tr>
<tr>
<td>INSAH</td>
<td>Institut du Sahel</td>
</tr>
<tr>
<td>IITA</td>
<td>International Institute of Tropical Agriculture</td>
</tr>
<tr>
<td>IRAM</td>
<td>Institut de Recherche et d’Application des Méthodes de Développement</td>
</tr>
<tr>
<td>IRAT</td>
<td>Institut de Recherche en Agriculture Tropicale</td>
</tr>
<tr>
<td>IRHO</td>
<td>Institut de Recherche sur les Huiles et Oléagineux</td>
</tr>
<tr>
<td>IAR&T</td>
<td>Institute of Agricultural Research and Training IAR</td>
</tr>
<tr>
<td>LCRI</td>
<td>Lake Chad Research Institute</td>
</tr>
<tr>
<td>NACGRAB</td>
<td>National centre for genetic resources and biotechnology, Nigeria</td>
</tr>
<tr>
<td>NASC</td>
<td>National agricultural seed council, Nigeria</td>
</tr>
<tr>
<td>NEPAD</td>
<td>The New Partnership for Africa’s Development</td>
</tr>
<tr>
<td>NRCRI</td>
<td>National Root Crops Reserach Institute</td>
</tr>
<tr>
<td>OCDE</td>
<td>Organisation de Coopération et de Développement économiques</td>
</tr>
<tr>
<td>PCDAA</td>
<td>Plan Compréhensif pour le Développement de l’Agriculture en Afrique</td>
</tr>
<tr>
<td>PIB</td>
<td>Produit intérieur brut</td>
</tr>
<tr>
<td>PNUD</td>
<td>Programme des Nations Unies pour le développement</td>
</tr>
<tr>
<td>PSA</td>
<td>Programme spécial pour les pays de l’Afrique subsaharienne touchés par la sécheresse et la désertification</td>
</tr>
<tr>
<td>USAID</td>
<td>Agence des États-Unis pour le développement international</td>
</tr>
<tr>
<td>UA-SAFGRAD</td>
<td>Union Africaine –Semi Arid Food Grain Research and Development</td>
</tr>
</tbody>
</table>
REMERCIEMENTS

L’Union Africaine SAFGRAD souhaiterait remercier Dr Akanvou Louise, Sélectionneur, Responsable du Département des Ressources génétiques au CNRA-Côte d’Ivoire, qui a préparé le présent rapport en qualité de consultante.

L’Union Africaine SAFGRAD tient également à exprimer son appréciation à la coopération Allemande à travers le GIZ qui a contribué techniquement et financièrement à la réalisation de la présente étude.
Les sécheresses récurrentes sont l’un des défis majeurs de la production des céréales dans les terres arides. Au cours des dernières décennies, le continent a connu des poches importantes de sécheresse, surtout, en Afrique de l’Ouest. En vue d’atténuer les effets néfastes des périodes de sécheresses récurrentes, les chercheurs ont mis en place avec succès des variétés des principales céréales qui sont résistantes à la sécheresse ou à maturité précoce. L’adoption de ces variétés dans l’exploitation agricole va non seulement accroître les rendements mais aussi sera d’un réel bénéfice pour les agriculteurs et les consommateurs en matière d’accroissement des revenus et de baisse du coût des céréales respectivement. En termes de gains en transformation, l’utilisation de ces variétés contribuera à terme à l’édification de conditions de vie résilientes dans les zones arides de l’Afrique pour un développement durable. L’étude sur le thème : « Changement climatique et intrants agricoles en Afrique avec un accent particulier sur les variétés tolérantes à la sécheresse : Cas de la zone semi-aride de l’Afrique de l’Ouest », a été menée par l’Union Africaine SAFGRAD, un des Bureaux Techniques Spécialisés de la Commission de l’Union Africaine, avec la collaboration de la GIZ.

Dans un contexte de haute variabilité climatique, la qualité des intrants agricoles dans l’agriculture moderne est le facteur déterminant dans la réussite des ménages et du développement national. J’espère sincèrement que les résultats de cette étude contribueront non seulement à élargir le réservoir des connaissances en matière d’utilisation des intrants dans l’agriculture moderne mais également facilitera l’adoption d’une agriculture climatique intelligente par l’utilisation des variétés résistantes. La valeur pratique de cette étude réside dans l’accroissement de la prise de conscience de la disponibilité de technologies agricoles en mesure d’atténuer la variabilité climatique dans les zones arides de la région sub-saharienne de l’Afrique.

Dr. Ahmed Elmekass

Coordinateur, UA-SAFGRAD

xD
Résumé du rapport

Les changements climatiques expriment toute évolution du climat dans le temps, qu’elle soit due à la variabilité naturelle ou aux actions humaines. Les changements climatiques ont donc des impacts sur la température, les précipitations, les sécheresses, les inondations, les élévations du niveau de la mer qui ont des conséquences sur la Sécurité alimentaire ; l’approvisionnement en eau et sur la Santé humaine. L’Afrique, qui n’émet que 4% en équivalent CO2 de gaz à effet de serre, est gravement touchée par le phénomène de changement climatique. En effet, les travaux du Groupe d’experts Intergouvernemental sur l’Évolution du Climat, indiquent que les changements climatiques engendreront des risques de chute des rendements de l’agriculture pluviale de l’ordre de 50% d’ici 2020 et une augmentation des superficies arides et semi-arides de 5 à 8% d’ici 2020. L’agriculture ouest-africaine généralement pluviale, demeure donc très sensible aux mauvaises conditions météorologiques, qui provoquent des baisses de production alimentaire et engendrent régulièrement des crises alimentaires.

Hormis le climat, le faible niveau d’utilisation des intrants agricoles en Afrique de l’ouest est un des principaux facteurs qui mettent à risque la sécurité alimentaire. Bien que l’importance de l’application des engrais azotés soit connue, leur utilisation reste très limitée en Afrique de l’Ouest à cause du coût élevé de l’azote, l’inefficacité du système de distribution, les politiques agricoles inadéquates, le faible taux de recouvrement des engrais azotés et d’autres facteurs socio-économiques. En outre, la qualité des semences en Afrique de l’Ouest est un gros problème, notamment en période d’insécurité alimentaire persistante. Ainsi, l’agriculture Ouest Africaine qui génère 35% des richesses et crée des emplois directs et indirects se caractérise par une faible productivité de la majorité des exploitations agricoles et une intensification limitée à quelques cultures commerciales d’exportation. Les principales contraintes incluent la faible fertilité des sols, le coût élevé des intrants, l’absence de services de transport, la faiblesse des investissements et le déficit hydrique.

Dans ce contexte auquel s’ajoutent les effets des changements climatiques et de la démographie galopante, des actions urgentes doivent être entreprises. Ces actions devront
contribuer à minimiser les effets des changements climatiques sur la production agricole et par conséquent sur la sécurité alimentaire des populations en Afrique et particulièrement celles de la zone semi-ariide de l’Afrique de l’Ouest.

L’UA/SAFGRAD, dans le cadre de la mission qui lui est assignée, à savoir, promouvoir et faciliter la formulation des politiques et programmes de recherche et de développement agricoles dans les zones semi-arides de l’Afrique, a en collaboration avec la GIZ, entrepris une étude avec pour thème: «Changement climatique et intrants agricoles en Afrique avec un accent particulier sur les variétés tolérantes à la sécheresse: Cas de la zone semi-aride de l’Afrique de l’Ouest».

La méthodologie basée sur des rencontres et interview de personnes ressources et sur des revues documentaires, a permis de rassembler les documents, informations et données des initiatives documentées dans les institutions nationales, régionales et internationales situées dans la zone semi-aride de Afrique de l’Ouest. L’étude a été conduite dans deux pays, le Nigeria et le Niger situés dans la zone semi-aride de l’Afrique de l’Ouest.

Nos principaux résultats montrent que la recherche agricole ouest africaine a mis au point des variétés améliorées et des paquets technologiques adaptés aux climats arides, qui pourraient contribuer à améliorer les productions agricoles dans les zones semi-arides de l’Afrique de l’Ouest où l’eau demeure le principal facteur limitant à la production. Mais le défi majeur est de rendre disponibles les intrants agricoles (semences, engrais et produits phytosanitaires) aux agriculteurs. L’accès aux intrants (engrais, semences, produits phytosanitaires) de qualité, en quantité, à temps et à un prix supportable, conditionne pour une grande partie la performance des systèmes de culture en termes d’augmentation des rendements.

Concernant les engrais, l’amélioration du niveau d’utilisation est un facteur préoccupant qui impacte directement la production agricole et donc les richesses générées et la sécurité alimentaire. Une des voies est de subventionner les engrais afin d’améliorer sa disponibilité et son accessibilité.

Concernant les semences, des efforts ont été faits au niveau des états de la CEDEAO qui ont proposé des textes régissant les semences dans la région. Mais la contrainte majeure est de rendre accessible aux producteurs, des variétés développées dans les centres de recherche.
Il est recommandé de développer des plateformes et mettre en place des subventions pour le financement des activités de diffusion de technologies. Il est aussi important de soutenir les systèmes nationaux de recherche afin que des quantités de semences pré-base et de base de ces variétés améliorées soient produites et mises à la disposition des producteurs semenciers qui à leur tour produiront les semences commerciales en quantité et qualité suffisantes. Les campagnes de sensibilisation doivent être multipliées à l’endroit des agriculteurs afin de leur apprendre l’importance des semences de qualité dans la production agricole.

Hormis les intrants agricoles, une autre contrainte majeure qui se pose à l’agriculture en zone semi-aride de l’Afrique de l’Ouest, généralement pluviale, est la faiblesse des précipitations. Il est donc important de mettre en place des stratégies de diffusion des systèmes adaptées d’irrigation. La réponse des cultures à l’azote dans cette zone dépend de la quantité totale de pluie et aussi de sa distribution.

Pour contribuer à la résilience des agriculteurs des régions arides de l’Afrique de l’Ouest, l’approche de la diversification des cultures donne des résultats satisfaisants. Ainsi des céréales traditionnelles sont produits avec des légumes et fruits très nutritifs et à forte valeur ajoutée grâce à l’irrigation goutte-à-goutte. Cela contribue à lutter contre la pauvreté et l’insécurité alimentaire.

Le présent rapport fait le point des technologies disponibles, en particulier les variétés tolérantes à la sécheresse adaptées à la zone semi-aride de l’Afrique de l’ouest. Par ailleurs, les recommandations faites pour améliorer la résilience des agriculteurs dans un contexte de changement climatique dans les régions arides, sont présentées.
INTRODUCTION

Impacts des changements climatiques en Afrique de l’Ouest

L’Afrique, qui n’émet que 4% en équivalent CO2 de gaz à effet de serre, est gravement touchée par le phénomène de changement climatique (Jeune Afrique N° 2427). Ainsi, selon le GIEC, la température a augmenté de 0,7% sur le continent en l’espace d’un siècle. En Afrique de l’ouest, les études montrent que la hausse du thermomètre provoquera des sècheresses et des inondations plus fréquentes, accentuera le phénomène de la désertification (Jeune Afrique N° 2427) : La dégradation des sols au sahel s’accélère et le désert du Sahara a progressé d’au moins 30
kms vers le sud depuis 1970. Les fleuves Niger, Volta et Sénégal enregistrent une baisse de leur niveau. Le lac Tchad est également victime d’une forte évaporation et sa superficie a été divisée par cinq en quarante ans.

Selon les prédictions de différentes études, plusieurs conséquences sont attendues de ce phénomène de changement climatique dont les principales sont :

Sur les températures: Le réchauffement climatique en Afrique sera plus important qu’au niveau mondial (GIEC, 2007). Ce rapport prédit une augmentation des amplitudes thermiques avec des extrêmes plus chaudes ou plus froides. La hausse de la température moyenne entre 1980/1999 et 2080/2099 pourrait atteindre entre 3-4°C sur l’ensemble du continent, soit 1,5 fois plus qu’au niveau mondial (Carte 6). En Afrique de l’ouest, les études montrent que la hausse du thermomètre provoquera des sécheresses et des inondations plus fréquentes, accentuera le phénomène de la désertification et des inondations ; l’aug-

Sur la perte de la biodiversité : La perte d’habitats naturels et de biodiversité sont prévisibles.

Sur les risques sanitaires : L’extension de l’occurrence et de la distribution des risques sanitaires et des maladies vectorielles.
Importance des intrants agricole dans l’agriculture Ouest Africaine

Dans les pays d’Afrique de l’Ouest, l’agriculture reste le principal secteur économique en termes d’emplois. Elle est responsable en moyenne de 35 % de la croissance du PIB. La proportion de la population rurale subsaharienne vivant dans ces pays est de 60% (BM, 2008), mais l’Afrique de l’Ouest avec 60% d’agriculteurs n’arrive, ni à se nourrir, ni à réaliser des excédents pour l’exportation.
à l’image de l’Europe qui avec 5% d’agriculteurs arrive à se nourrir et à exporter. L’agriculture en Afrique de l’Ouest se caractérise par une faible productivité de la majorité des exploitations agricoles et une intensification limitée à quelques cultures commerciales d’exportation. Les principales contraintes incluent la faible fertilité des sols, le coût élevé des intrants, l’absence de services de transport, la faiblesse des investissements et le déficit hydrique (BAD, 2011b).

La plupart des sols de la zone semi-aride de l’Afrique de l’Ouest se caractérisent par leur faible teneur en éléments nutritifs ainsi que d’une insuffisance d’apports en éléments nutritifs organiques ou minéraux. Les éléments nutritifs des sols, exportés par les cultures, ne sont pas remplacés par des apports suffisants en nutriments, conduisant à un appauvrissement des sols. Selon l’UEMOA (2006), le faible développement de la production agricole en Afrique s’est principalement fait par un accroissement des superficies cultivées et non par une intensification. Aussi, la consommation des engrais en Afrique de l’Ouest est-elle l’une des plus faibles au monde : seulement 9 kg/ha/an de nutriments sont appliqués dans l’espace CEDEAO contre une consommation moyenne mondiale de 100.8 kg/ha/an en 2002. La FAO estime que les taux d’application moyenne d’éléments fertilisants doivent croître de 9 kg/ha/an à 23 kg/ha/an d’ici 2015, si l’on veut atteindre l’objectif de croissance annuelle de la production agricole, fixé à 6% par le Plan Détailleur pour le Développement de l’Agriculture en Afrique (PCDAA) adopté par le NEPAD. Le marché ouest africain des engrais minéraux représente moins de 0,5% du marché mondial. Selon le rapport du premier Forum des parties prenantes de la filière engrais en Afrique de l’ouest, tenu en septembre 2013, sur les 15 Etats membres de la CEDEAO, seuls 4 ont amélioré l’utilisation des
engrais. Il s’agit de la Côte d’Ivoire avec une moyenne de 16 kg/hectare, le Nigeria (13 kg/ha), le Ghana (12 kg/ha) et le Mali (11,3 kg/ha).

L’utilisation de semences améliorées de cultures vivrières par les agriculteurs est faible en Afrique de l’Ouest (10-20% pour le mil, sorgho, niébé et 25-30% pour le maïs et le riz). La qualité des semences est un gros problème, alors que la semence est le facteur de production le plus important et l’intrant le moins cher pour les systèmes de production en Afrique subsaharienne. En général, les agriculteurs ont recours à leurs propres semences ou à des semences conservées par des réseaux informels. Ces sources ont tendance à être peu fiables en termes de quantité, de qualité, de tolérance/résistance aux ravageurs et aux maladies, et contribuent ainsi à une faible productivité des exploitations agricoles.

Les principaux freins à l’utilisation des intrants en Afrique de l’Ouest tiennent à plusieurs facteurs au nombre desquels, les experts ont cité l’accès limité au crédit et au financement des producteurs, le coût élevé de l’azote, l’inefficacité du système de distribution et les politiques agricoles inadéquates.

Outre le faible niveau d’utilisation des intrants agricoles en Afrique de l’ouest, le climat est un des principaux facteurs qui mettent à risque la sécurité alimentaire. L’agriculture ouest-africaine étant généralement pluviale, elle est sensible aux mauvaises conditions météorologiques, qui provoquent des baisses de production alimentaire et engendre régulièrement des crises alimentaires. Les changements climatiques se manifestent, par une baisse des précipitations et les cultures arrivent difficilement, dans ce contexte, à boucler leur cycle de croissance et à exprimer leur potentiel de rendement et de production.
Les travaux du Groupe d’experts Intergouvernemental sur l’Evolution du Climat (GIEC, 2007b), indiquent des risques de chute des rendements de l’agriculture pluviale de l’ordre de 50% d’ici 2020 et une augmentation des superficies arides et semi-arides de 5 à 8% d’ici 2020. La situation alimentaire dans les pays de la CEDEAO, indique que les demandes de produits agricoles et d’élevage vont être accrues de 50 % d’ici à 2025, de 70 % d’ici à 2030. La demande urbaine va quant à elle s’accroître de 70 % d’ici à 2025 et doubler d’ici à 2030. Dans un contexte caractérisé par des sols de plus en plus pauvres en raison de l’érosion éolienne et hydrique, des mauvaises pratiques agricoles, des effets des changements climatiques et de la démographie galopante, des actions urgentes doivent être entreprises. Ces actions devront contribuer à minimiser les effets des changements climatiques sur la production agricole et par conséquent sur la sécurité alimentaire des populations en Afrique et particulièrement celles de la zone semi-aride de l’Afrique de l’Ouest.

L’UA/SAFGRAD, dans le cadre de la mission qui lui est assignée, à savoir, promouvoir et faciliter la formulation des politiques et programmes de recherche et de développement agricoles dans les zones semi-arides de l’Afrique, a en collaboration avec la GIZ, entrepris une étude avec pour thème: «Changement climatique et intrants agricoles en Afrique avec un accent particulier sur les variétés tolérantes à la sécheresse: Cas de la zone semi-aride de l’Afrique de l’Ouest». Cette étude a été menée dans deux pays, le Niger et le Nigeria, représentatifs de la zone semi-aride de l’Afrique de l’Ouest.
Objectifs de l’étude

L’objectif global de cette étude est de contribuer à l’amélioration de la sécurité alimentaire à travers l’inventaire des technologies adaptées à la production agricole dans un contexte de changement climatique dans la zone semi-aride de l’Afrique de l’Ouest.

Il s’agit plus spécifiquement de répertorier :

- les variétés tolérantes à la sécheresse ;
- les techniques d’irrigation et de conservation de l’eau.

I. APPROCHE METHODOLOGIQUE

I.1 Zone de l’étude

La zone cible de cette étude est la *zone semi-aride de l’Afrique de l’Ouest* qui fait partie de quatre grandes zones agro-écologiques (Carte 3 et 4):

La zone saharienne (aride) est caractérisée par un climat désertique (pluviométrie moins de 200 de pluie par an) avec deux saisons dont une saison des pluies de deux à trois mois, et une saison sèche de neuf à dix mois. Elle a une végétation de steppes arborées et arbustives clairsemées, avec d’abondantes graminées comme pâturage.

La zone sahélienne (semi-aride) est caractérisée par un climat sahélien (pluviométrie annuelle comprise entre 200 mm et 600 mm par an) avec deux saisons dont une pluvieuse de trois mois, et une sèche de neuf mois. La végétation est faite de steppes arborées et arbustives. C’est une zone à vocation agricole.

La zone soudanienne (subhumide) est caractérisée par un climat soudanien (pluviométrie annuelle comprise entre
600 mm et 1200 mm par an). Le couvert végétal est une savane arborée et arbustives. C’est une zone à vocation agricole.

La zone guinéenne (humide) est caractérisée par un climat Guinéen (pluviométrie annuelle supérieure à 1200 mm par an) avec quatre saisons distinctes, dont deux pluvieuses et deux sèches. La végétation est faite de forêt dense. C’est une zone à vocation agricole.

La zone semi-aride comprend la ceinture saharo-sahélienne, qui reçoit entre 150 et 600 mm de pluie par an, et la ceinture soudano-sahélienne, qui en reçoit de 600 à 1000 mm (Carte 4). Elle couvre six (6) pays de l’Afrique de l’Ouest que sont: le Burkina Faso, le Mali, la Mauritanie, le Niger, le Nigeria (nord du pays) et le Sénégal.

Les raisons du choix de la zone-aride comme zone d’étude, repose sur le fait que les zones arides et semi-arides couvrent environ 41 % de l’Afrique sub-saharienne et sont sujettes aux changements climatiques qui se traduisent par des précipitations faibles et irrégulières (300–600 mm/an) et des sols peu fertiles qui tendent à former des croûtes (ONU, 2011; MEA 2009). La plupart des superficies cultivées de cette zone sont exploitées en agriculture pluviale et seulement deux pour cent des terres sont irriguées. En outre, la zone semi-aride est la zone d’intervention de l’UA/SAFGRAD dont le mandat est de faciliter la formulation de politiques et programmes afin d’améliorer la résilience des moyens de subsistance rurale en Afrique semi-aride.
Carte 3: Zones agro-écologiques de l’Afrique subsaharienne

Source: Harvest Choice/IFPRI, 2009. (Document Internet)

Source: Centre Régional AGRHYMET (CRA), CSAO/OCDE (2005). (Document Internet)
1.2 Méthodologie

Les données et informations ont été recueillies auprès de personnes ressources selon deux méthodes que sont :

- La revue documentaire qui a permis d’examiner des rapports d’enquêtes, mémoires et thèses, communications orales et documents de politique nationale documentés dans les institutions nationales (SNRA du Burkina Faso, Nigeria et du Niger) et institutions internationales et régionales (IITA, CILSS, ICRISAT, SAF-GRAD) situées en Afrique de l’Ouest.

- Des rencontres ont été organisées pour des informations avec les personnes ressources des institutions nationales (SNRA du Nigeria et du Niger) et institutions internationales et régionales (IITA, CILSS, ICRISAT, SAF-GRAD) situées dans la zone semi-aride en Afrique de l’Ouest. Un questionnaire (Annexe 1) a été proposé aux personnes ressources que le consultant n’a pas pu rencontrer physiquement.

Pour conduire l’étude, deux pays, le Nigeria et le Niger (Carte 5), ont été choisis pour être visités en ce qui concerne la zone semi-aride de l’Afrique de l’Ouest. Plusieurs raisons expliquent le choix de ces deux pays, détaillées ci-dessous.

(Document Internet)
II. CAS D’ETUDE DE LA ZONE SEMI ARIDE DE L’AFRIQUE DE L’OUEST

2.1 Le Nigeria

Généralités

Le Nigeria, pays situé en Afrique de l’ouest, s’étend sur une superficie de 923 768 Km² et est limité au nord par le Niger, à l’est par le Tchad et le Cameroun, et à l’ouest par le Bénin (Carte 6). C’est le pays le plus peuplé d’Afrique (160 millions d’habitants) qui représente un marché important. Pendant des décennies, le Nigeria était plus dépendant du pétrole en tant que moteur économique de la croissance, abandonnant les agriculteurs et devenant un pays importateur de denrées alimentaires. Depuis les années 80, le secteur agricole s’est transformé avec des changements sur l’ensemble de la chaîne de valeur. Les orientations de sa récente politique agricole a favorisé l’émergence de grandes exploitations agro-industrielles qui ont contribué à faire du Nigeria, un pays autosuffisant pour plusieurs denrées alimentaires. L’agriculture représente 35% du PIB et occupe 70% de la population active. Quatre grandes zones agro-écologiques se distinguent que sont le Sahel (300-700 mm de pluie), la zone de savane soudanienne (700-1100 mm de pluie), la zone des savanes Guinéenne (1100-1500 mm de pluie), la zone de forêt tropicale (1500-1900 mm de pluie).

Carte 6: Carte des zones agro-écologiques du Nigeria.
(Document Internet)
Les espèces produites par le pays incluent le sorgho, du mil, le niébé principalement dans le Nord, ainsi que le maïs, le riz et l’igname dans le Sud. Le manioc, les légumes et les tomates sont cultivés dans tout le pays. Les grandes cultures de rente sont le cacao (4ème rang mondial avec 380 000 t produites en 2004) et le caoutchouc naturel.

Comme la majorité de l’Afrique, le Nigeria est vulnérable au réchauffement climatique. Plusieurs études révèlent l’impact des changements climatiques sur le Nigeria qui se traduisent par l’élévation du niveau de la mer et les changements dans les saisons et dans la distribution des précipitations, qui portent atteinte à l’agriculture et accélèrent la désertification.

Institutions visitées

- **L’Institut International d’Agriculture Tropicale**

- **Le Centre du riz pour l’Afrique**

Africa Rice est l’un des 15 Centres internationaux de recherche agricole qui sont membres du Consortium du CGIAR. Sa mission est de contribuer à la réduction de la

Une grande avancée fut réalisée avec la création de NE-RICA (New Rice for Africa), qui est un croisement de variétés du riz africain (*Oryzglaberrima*) et de variétés du riz asiatique (*Oryzasativa*).

Variétés disponibles au Nigeria

Un catalogue (ci-dessous) des variétés homologuées et diffusées au Nigeria est disponible.
Plusieurs variétés d’espèces différentes adaptées à différentes zones agro-écologiques du Nigeria sont listées : Niébé : 30 variétés ; Soja : 19 variétés ; Arachide : 24 variétés ; Maïs : 100 variétés ; Mil : 11 variétés ; Riz : 64 variétés ; Sorgho : 43 variétés ; Blé : 9 variétés ; Igate: 19 variétés ; Manioc : 43 variétés ; Patate douce : 7 variétés ; Tomate : 14 variétés ; Gombo : 3 variétés ; Piment : 5 variétés.

Les variétés des espèces suivantes sont les plus cultivées au Nigeria :

- Le Soja : TGx 1448-2E, TGx 1440-1E, TGx 1485-1D, Samsoy and TGx 1019-2EB.

2.2 Le Niger

Généralités

Le Niger est situé en Afrique de l’ouest, s’étend sur 1 267 000 Km² et se situe dans les tropiques Nord, entre les latitudes 11°33’N et 23°33’N. Elle est limitée par l’Algérie et la Libye au nord, le Mali et le Burkina Faso à l’Ouest, le Bénin et le Nigéria au sud et le Tchad à l’est.

La population du Niger est rurale à 95 % ; sédentaire rurale à 81 % et nomade ou semi-nomade à 19 %. L’agriculture
au sud et l’élevage dans le sahel constituent le mode de vie de 95 % de la population.

Le climat du Niger est du type tropical aride et semi-aride. Il se caractérise par deux saisons, dont une saison sèche qui dure huit mois et une saison des pluies qui dure quatre (04) mois. Le Niger est un pays sahélien et la plus grande partie de son territoire se situe en zone saharienne (74%) avec moins de 200 mm de pluies. Le Niger compte différentes zones agro-écologiques avec des types d’environnement et de végétation définis. On peut différencier trois zones de végétation du sud au nord (Carte 7):

- la zone soudanienne limitée au Nord par une ligne allant du 15ème degré de latitude à l’Ouest à un peu moins du 14ème degré à l’Est. C’est la zone avec près de 600 mm de pluie par an.

- la zone sahélienne qui reçoit entre 250 à 500 mm de pluie par an. L’humidité diminue vers l’Est et la végétation est marquée par une steppe épineuse et des Acacia. La végétation est favorable à l’agro-pastoralisme.

- la zone saharienne qui reçoit de 0 à 200 mm de pluie par an. C’est une zone immense à végétation épineuses. L’extrême aridité de cette zone explique l’absence presque totale de végétation. Mais le peu de végétation que l’on trouve est adopté à de très longues période de sécheresse ; les racines sont de grande taille et profondes ; les organes d’évaporation sont réduits (les épines remplaçant les feuilles) ; les herbes sont dures et courtes.
Depuis plus d’une décennie, il est observé au Niger, une diminution des moyennes annuelles des pluies qui se traduisent par un glissement des isohyètes vers le sud (AGRHYMET, 2008). Les précipitations enregistrées sont caractérisées par une forte irrégularité à la fois spatiale et temporelle. Ainsi, la répartition de la pluviométrie est inadéquate sur plus d’un tiers du pays et l’agriculture est concentrée dans les régions frontalières du sud et du sud-ouest. Dans ces régions, les cultures sont semées pendant la saison des pluies et leur productivité dépend de la pluviosité.

La superficie potentiellement cultivable est estimée à 12% de la superficie totale du pays. 80 à 85% des terres culti-
vables sont dunaires et seulement 15% à 20% sont hydro-morphes et argileux. Ces sols sont peu productifs et sensibles à l’érosion hydrique et éolienne. En outre, l’eau est le problème essentiel des vastes étendues du Niger. Une pluviosité irrégulière et des techniques de gestion des sols et des cultures inadéquates peuvent expliquer la baisse des rendements et un taux de production annuel variable. Un certain niveau de productivité est passibles dans les régions où la pluviosité annuelle dépasse 400 mm mais pas en en deçà.

Institutions visitées

- **ICRISAT**

L’ICRISAT (en Anglais) est l’un des 15 centres de recherche membres du Groupe consultatif pour la recherche agricole internationale. Établi en 1971, sa mission consiste à aider « 600 millions de pauvres à surmonter la faim, la pauvreté et la dégradation de l’environnement dans les tropiques semi-arides grâce à une agriculture plus efficace ».

Il est basé à Patancheru (Hyderabad, Andhra Pradesh) en Inde. Il dispose de plusieurs centres régionaux : Niamey (Niger), Nairobi (Kenya) et des bases de recherches : Bamako (Mali), Bulawayo (Zimbabwe). Le centre ICRISAT de Sadoré, près de Niamey, a été créé, il y a plus de trente ans, dans le cadre de la recherche globale qui doit être menée par l’institut dans toutes les régions semi-arides. Au Niger, le programme de l’Institut intervient sur plusieurs fronts, à savoir le programme sur les zones en marge du désert, l’éco-ferme sahélienne, le jardin africain, la conservation des ressources génétiques, l’amélioration des variétés, la diversification des cultures et la gestion des ressources naturelles.
Les spéculations qui font l’objet de recherche sont les suivantes : Chickpea (Cicer arietinum L.), Pigeonpea (*Cajanus cajan* (L.) Millspaugh), Groundnut (*Arachis hypogaea*), Pearl millet (*Pennisetum glaucum* (L.) R. Br.), Sorghum (*Sorghum bicolor* (L.) Moench), and Small millets.

AGRHYMET

Variétés disponibles au Niger

Un catalogue des espèces et variétés végétales (CNEV) des variétés homologuées et diffusées au Niger est disponible (ci-contre). Plusieurs variétés d’espèces différentes adaptées à la zone aride du Niger sont listées parmi les- quelles le Mil : 33 variétés ; Sorgho : 7 variétés ; Maïs : 4 variétés ; Riz : 16 variétés ; Niébé : 15 variétés ; Sésame : 4 variétés ; Arachide : 12 variétés ; Oignon : 3 variétés ; Manioc : 6 variétés ; Tomate : 4 variétés ; Pomme de terre : 4 variétés.
(Copie scannée de l’original)
Au Niger, les structures de recherche nationale (INRAN) et Internationale (ICRISAT), en collaboration les organisations des producteurs agricoles, produisent chaque année des quantités de semences certifiées de variétés issues du catalogue national, qui s’adaptent aux diverses conditions écologiques du Niger. Les variétés des espèces suivantes sont produites :

Mil

HPK : Cycle de maturité de 75-90 jours et un potentiel de rendement de 2,5 tonnes/ha
SOSAT-C88 : Cycle de maturité de 75-90 jours et un potentiel de rendement de 1,5 tonnes/ha
ICMV IS99001 : Cycle de maturité de 75-95 jours et un potentiel de rendement de 1,5 tonnes/ha
Zatib : Cycle de maturité de 85-95 jours et un potentiel de rendement de 2 tonnes/ha

Sorgho

MOTA Maradi : Cycle de maturité de 75-80 jours et un potentiel de rendement de 2 tonnes/ha
SSD-35 : Cycle de maturité de 75-80 jours et un potentiel de rendement de 2 tonnes/ha
IRAT-204 : Cycle de maturité de 80-90 jours et un potentiel de rendement de 2 tonnes/ha

Niébé

TN5-78 : Cycle de maturité de 75 jours et un potentiel de rendement de 2,5 tonnes/ha
KVX30-309-6G : Cycle de maturité de 75 jours et un potentiel de rendement de 2 tonnes/ha
IT90K372-1-2 : Cycle de maturité de 70 jours et un potentiel de rendement de 3 tonnes/ha
IT97K499-35 : Cycle de maturité de 60-65 jours et un po-
tentiel de rendement de 2 tonnes/ha
IT97K499-38 : Cycle de maturité de 60-65 jours et un potentiel de rendement de 2 tonnes/ha

Arachide :
55-437 : Cycle de maturité de 85-90 jours et un potentiel de rendement de 2 tonnes/ha
RRB : Cycle de maturité de 90 jours et un potentiel de rendement de 2 tonnes/ha

III. VARIETES CULTIVEES DANS LES REGIONS SEMI-ARIDES DE L’AFRIQUE DE L’OUEST

Plusieurs variétés développées dans les structures nationales et internationales de recherche sont cultivées et adaptées aux zones semi-arides de l’Afrique de l’Ouest. Les variétés à précoce (cycle court) ou extra-précoce, tolérante à l sécheresse, adaptées à la zone semi-aride de l’Afrique de l’Ouest (Niger, Nigeria, Burkina Faso et mali), sont listées selon les espèces, les zones de production ou d’adap-

Source : Dr Akanvou Louise
tation et le nom du mainteneur (Etablissement responsable du maintien de la variété).

3.1 Les céréales

Les céréales les plus cultivées en Afrique de l’Ouest et plus particulièrement dans la zone semi-aride sont le mil, le sorgho, le maïs et le riz. Les variétés cultivées devront être tolérantes aux espèces *Striga* qui sont une contrainte majeure à la production des céréales sur les sols pauvres

Tableau 1 : Variétés améliorées de mil cultivées au Burkina Faso, Niger et Nigeria

<table>
<thead>
<tr>
<th>Nom de la variété</th>
<th>Caractéristiques de la variété</th>
<th>Zone d’adaptation</th>
<th>Date d’inscription au catalogue / Mainteneur</th>
</tr>
</thead>
</table>
| MISARI 1 | Semis-maturité : 100-105 jours
 Hauteur : 250 cm
 Forme de l’épi : cylindrique
 Diamètre épi : 2 – 2,5 cm
 Tolérante au Mildiou et au Charbon
 Couleur des grains: grise
 Rend/grain/potentiel: 2,5t/ha | Pluviométrie : 600-900 mm | INERA |
| SOSAT C88 | Semis-maturité : 85-90 jours
 Hauteur : 205 cm
 Forme de l’épi : cylindrique
 Diamètre épi : 2,5 – 3 cm
 Tolérante au Mildiou et au Charbon
 Couleur des grains: grise
 Rend/grain/potentiel: 2,7t/ha | Pluviométrie : 400-900 mm | INERA |
| MISARI 2 | Semis-maturité : 100-105 jours
 Hauteur : 250 cm
 Forme de l’épi : cylindrique
 Diamètre épi : 2 – 2,5 cm
 Tolérante au Mildiou et au Charbon
 Couleur des grains: gris-crème
 Rend/grain/potentiel: 2,5t/ha | Pluviométrie : 600-900 mm | INERA

(suite Tableau en Page 25)
en éléments nutritifs. L’utilisation de variétés tolérantes combinée avec la gestion intégrée du Striga et de la fertilité du sol permet d’améliorer les rendements.

3.1.1 Le Mil

Tableau 1 : Suite 1

<table>
<thead>
<tr>
<th>Variété</th>
<th>Cycle semis –maturité :</th>
<th>Pluviométrie :</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>IKMP 1</td>
<td>75-80 jours</td>
<td>700-900 mm</td>
<td>INERA</td>
</tr>
<tr>
<td>Semis-floraison :</td>
<td>Hauteur : 250 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forme de l’épi : cylindrique</td>
<td>Diamètre épi : 1,5 – 2 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolérante au Mildiou et au Charbon</td>
<td>Couleur des grains: gris-jaune</td>
<td>Rend/grain/potentiel: 2t/ha</td>
<td></td>
</tr>
<tr>
<td>Pluviométrie :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IKMV 8201</td>
<td>85-90 jours</td>
<td>400-900 mm</td>
<td>INERA</td>
</tr>
<tr>
<td>Semis-maturité :</td>
<td>Hauteur : 210 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forme de l’épi : bougie</td>
<td>Diamètre épi : 2 - 3 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolérante au Mildiou et au Charbon</td>
<td>Couleur des grains: grise</td>
<td>Rend/grain/potentiel: 2t/ha</td>
<td></td>
</tr>
<tr>
<td>Pluviométrie :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IKMP 5</td>
<td>110-115 jours</td>
<td>700-900 mm</td>
<td>INERA</td>
</tr>
<tr>
<td>Semis-maturité :</td>
<td>Hauteur : 250 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diamètre épi : 1,5 – 2 cm</td>
<td>Tolérante et au Charbon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Couleur des grains: gris-jaune</td>
<td>Rend/grain/potentiel: 2,5t/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pluviométrie :</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NIGER

<table>
<thead>
<tr>
<th>Variété</th>
<th>Cycle semis –maturité :</th>
<th>Pluviométrie :</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCP3</td>
<td>70-75 jours</td>
<td>280-350 mm</td>
<td>1985/INRAN</td>
</tr>
<tr>
<td>(Langue locale: HainiKiré)</td>
<td>Hauteur de plant : 150-200 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aptitude au tallage : Bonne</td>
<td>Rendement potentiel : 2 T/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT6</td>
<td>75-80 jours</td>
<td>280-350 mm</td>
<td>1996/INRAN</td>
</tr>
<tr>
<td>(Composite de Tarna-3)</td>
<td>Hauteur de plant : 220-240 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aptitude au tallage : Bonne</td>
<td>Rendement potentiel : 1,5 T/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variété Précoce</td>
<td>Cycle semis –maturité</td>
<td>Hauteur de plant</td>
<td>Aptitude au tallage</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------------</td>
<td>------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>ANK P1</td>
<td>80-85 jours</td>
<td>145-150 cm</td>
<td>Moyenne</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H80-10GR (HativeGuerguéra)</td>
<td>80-85 jours</td>
<td>200-230 cm</td>
<td>Bonne</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HKB TIF (HainiKiré de BengouHatif)</td>
<td>80-85 jours</td>
<td>130-140 cm</td>
<td>Bonne</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>¾ HK</td>
<td>80-90 jours</td>
<td>120-135 cm</td>
<td>Bonne</td>
</tr>
</tbody>
</table>
Tableau 1 : Suite 3

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HKP (HaïniKiré Précoce)</td>
<td>80-90 jours</td>
<td>190-200 cm</td>
<td>Moyenne</td>
<td>2,5 T/ha</td>
<td>350-800 mm</td>
<td>1980/INRAN</td>
</tr>
<tr>
<td>MORO</td>
<td>80-90 jours</td>
<td>150-160 cm</td>
<td>Bonne</td>
<td>2,5 T/ha</td>
<td>200-300 mm</td>
<td>1985/INRAN</td>
</tr>
<tr>
<td>CEV (Composite à épis violets)</td>
<td>80-90 jours</td>
<td>180-300 cm</td>
<td>Bonne</td>
<td>2,5 T/ha</td>
<td>400-800 mm</td>
<td>1985/INRAN</td>
</tr>
<tr>
<td>CAR (Composite aristé)</td>
<td>90-95 jours</td>
<td>170-195 cm</td>
<td>Bonne</td>
<td>2 T/ha</td>
<td>400-800 mm</td>
<td>1985/INRAN</td>
</tr>
<tr>
<td>CIVT (Composite Inter-Variétal de Tarna)</td>
<td>90-95 jours</td>
<td>200-220 cm</td>
<td>Moyenne</td>
<td>2,5 T/ha</td>
<td>450-650 mm</td>
<td>1985/INRAN</td>
</tr>
<tr>
<td>DG P1 (Dan Gombé)</td>
<td>85-90 jours</td>
<td>145-150 cm</td>
<td>Moyenne</td>
<td>2,5 T/ha</td>
<td>450-650 mm</td>
<td>1985/INRAN</td>
</tr>
<tr>
<td>Variety</td>
<td>Description</td>
<td>Pluviometry</td>
<td>Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>-------------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GR PL (Guerguéraépurée)</td>
<td>Variété très précoce</td>
<td>Pluviométrie : 160-200 mm</td>
<td>1985/INRAN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cycle semis –maturité : 85-90 jours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hauteur de plant : 145-150 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aptitude au tallage : Moyenne</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rendement potentiel : 2,5 T/ha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3 Kollo</td>
<td>Variété très précoce</td>
<td>Pluviométrie : 200-300 mm</td>
<td>1974/INRAN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cycle semis –maturité : 90-95 jours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hauteur de plant : 160-225 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aptitude au tallage : Moyenne</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rendement potentiel : 3 T/ha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Souna III</td>
<td>Variété précoce</td>
<td>Pluviométrie : 300-800 mm</td>
<td>1985/INRAN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cycle semis –maturité : 90-95 jours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hauteur de plant : 160-225 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aptitude au tallage : Moyenne</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rendement potentiel : 3 T/ha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zati B</td>
<td>Variété précoce</td>
<td>Pluviométrie : 350-800 mm</td>
<td>1996/INRAN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cycle semis –maturité : 90-95 jours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hauteur de plant : 190-200 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aptitude au tallage : Moyenne</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rendement potentiel : 2,5 T/ha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NIGERIA

<table>
<thead>
<tr>
<th>Variety</th>
<th>Description</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samil-1(Ex-Borno)</td>
<td>Variété précoce et à haut rendement</td>
<td>Sahel (300-700 mm de pluie) et Savane soudanienne (700-1100 mm de pluie)</td>
</tr>
<tr>
<td>Samil-2 (Nigerian Composite)</td>
<td>Variété adaptée à différentes écologies, tolérante degré élevé d’humidité</td>
<td>Sahel (300-700 mm de pluie) et Savane soudanienne (700-1100 mm de pluie)</td>
</tr>
<tr>
<td>Samil-3 (Dwarf Composite)</td>
<td>Variété précoce, courte en taille et adaptée à la mécanisation</td>
<td>Sahel (300-700 mm de pluie) et Savane soudanienne (700-1100 mm de pluie)</td>
</tr>
</tbody>
</table>
Tableau 1 (suite 5 et fin)

<table>
<thead>
<tr>
<th>Variété</th>
<th>Description</th>
<th>Zone climatique</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samil-4 (Maiwa Composite)</td>
<td>Variété précoce dotée de tiges dures utilisées pour les clôtures</td>
<td>Sahel (300-700 mm de pluie) et Savane soudanienne (700-1100 mm de pluie)</td>
<td>1991/IAR-Samaru, Zaria</td>
</tr>
<tr>
<td>Samil-5 (Bristie Composite)</td>
<td>Variété précoce non attaquée par les oiseaux</td>
<td>Sahel (300-700 mm de pluie) et Savane soudanienne (700-1100 mm de pluie)</td>
<td>1991/IAR-Samaru, Zaria</td>
</tr>
<tr>
<td>Samil-6 (S.E. 13)</td>
<td>Variété précoce, adaptée aux zones de savane avec un bon potentiel de rendement</td>
<td>Sahel (300-700 mm de pluie) et Savane soudanienne (700-1100 mm de pluie)</td>
<td>1991/IAR-Samaru, Zaria</td>
</tr>
<tr>
<td>Samil-7 (S.E.2124)</td>
<td>Variété précoce, adaptée aux zones de savane avec un bon potentiel de rendement</td>
<td>Sahel (300-700 mm de pluie) et Savane soudanienne (700-1100 mm de pluie)</td>
<td>1991/IAR-Samaru, Zaria</td>
</tr>
<tr>
<td>LCIC-MV-1</td>
<td>Variété précoce, adaptée aux zones de savane avec un bon potentiel de rendement. Variété appréciée pour les mets</td>
<td>Sahel (300-700 mm de pluie) et Savane soudanienne (700-1100 mm de pluie)</td>
<td>2000/IER Mali-ICRISAT-1991/IAR-Samaru, Zaria</td>
</tr>
<tr>
<td>Pearl millet LCIC MV-2</td>
<td>Variété extra-précoce, adaptée aux zones de savane. Variété appréciée pour les mets</td>
<td>Sahel (300-700 mm de pluie) et Savane soudanienne (700-1100 mm de pluie)</td>
<td>2003/LCRI, Maiduguri</td>
</tr>
<tr>
<td>LCICMH-1</td>
<td>Variété à maturité intermédiaire, adaptée aux zones de savane. Variété appréciée pour les mets</td>
<td>Sahel (300-700 mm de pluie) et Savane soudanienne (700-1100 mm de pluie)</td>
<td>2005/ LCRI, Maiduguri</td>
</tr>
<tr>
<td>LCICMV-3 (Supersosat)</td>
<td>Variété précoce, adaptée aux zones de savane, tolérante au ‘downymildew’. Les tiges utilisées pour les clôtures.</td>
<td>Sahel (300-700 mm de pluie) et Savane soudanienne (700-1100 mm de pluie)</td>
<td>2011/ICRISAT-LCRI, Maiduguri</td>
</tr>
</tbody>
</table>
3.1.2 Le Sorgho

Le sorgho (Sorghum bicolor (L.) Moench), est une culture résiliente qui peut s’adapter aux changements climatiques particulièrement dans les conditions de températures élevées, sécheresse et salinité du sol. Le sorgho est la cinquième céréale la plus importante qui contribue comme aliment de base à l’alimentation de plus de 500 millions de personnes dans 30 pays dans le monde. Il est cultivé sur des superficies de près de 40 millions d’ha dans l’ensemble des pays d’Afrique, d’Asie, d’Océanie et dans les Amériques. Les cinq principaux pays producteurs de sorgho en Afrique de l’Ouest sont le Niger, Burkina Faso, Nigeria, Mali, et le Sénégal.

Source : UNCCD
Tableau 2 : Variétés améliorées de sorgho cultivées au Niger et Nigeria

<table>
<thead>
<tr>
<th>Nom de la variété</th>
<th>Caractéristiques de la variété</th>
<th>Zone d’adaptation</th>
<th>Date d’inscription au catalogue / Mainteneur</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIGER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEPON-82</td>
<td>Variété Précoce</td>
<td>Pluviométrie 400-600 mm</td>
<td>1982/ ICRISAT-INRAN-</td>
</tr>
<tr>
<td></td>
<td>Cycle semis – maturité : 90-105 jours</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hauteur de plant : 150-160 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Couleur grains : Blanc-crème</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rendement potentiel : 2,5 T/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sensible à la moisissure, au charbon et aux Punaises, Panicule compacte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bonne qualité de graine et fourrage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS D35</td>
<td>Variété Précoce</td>
<td>Pluviométrie 300-600 mm</td>
<td>2010/ INRAN</td>
</tr>
<tr>
<td></td>
<td>Cycle semis – maturité : 75-85 jours</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hauteur de plant : 150-160 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Couleur grains : Blanche</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rendement potentiel : 2,5 T/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Panicule semi-compacte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tolérante à la cécidomyie, bonne adaptation aux sols dunaire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDK (Matché DaKoumya)</td>
<td>Cycle semis – maturité : 110 jours</td>
<td>Pluviométrie 400-800 mm</td>
<td>2010/ INRAN</td>
</tr>
<tr>
<td></td>
<td>Hauteur de plant : 165-200 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Couleur grains : Blanche</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rendement potentiel : 3 T/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Panicule compacte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sensible au charbon</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tolérante à la sécheresse</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bonne adaptation aux sols dunaire</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tableau 2 : *(suite 1)*

<table>
<thead>
<tr>
<th>Nom de la variété</th>
<th>Caractéristiques de la variété</th>
<th>Zone d’adaptation</th>
<th>Date d’inscription au catalogue / Mainteneur</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIGER</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| SRN-39 | Cycle semis – maturité : 90-95 jours
 Hauteur de plant : 165-200 cm
 Couleur grains : Blanche
 Rendement potentiel : 2 t/ha
 Panicule compacte
 Tolérante à *Striga hermonthica*, Sensible aux Moisissures, aux Punaises et à la Cécidomyie | Pluviométrie 400-600 mm | 1992/IAR |
| IRAT-204 | Variété précoce
 Cycle semis – maturité : 90-95 jours
 Hauteur de plant : 165-200 cm
 Couleur grains : Blanc-crème
 Rendement potentiel : 2 t/ha
 Panicule compacte
 Tolérante à la sécheresse
 Tolérante à *Striga hermonthica*, Sensible aux Moisissures, aux Punaises et à la Cécidomyie | Pluviométrie 350-500 mm | 1996/IRAT |
| Mota- Maradi | Variété extra-précoce
 Cycle semis – maturité : 75-80 jours
 Hauteur de plant : 170-225 cm
 Couleur grains : Blanche
 Rendement potentiel : 2 t/ha
 Panicule semi-compacte
 Tolérante au charbon allongé, bonne adaptation au sol dunaire | Pluviométrie 350-500 mm | 1994/IRAT |
Tableau 2 : (suite 2)

<table>
<thead>
<tr>
<th>Nom de la variété</th>
<th>Caractéristiques de la variété</th>
<th>Zone d'adaptation</th>
<th>Date d’inscription au catalogue / Mainteneur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samsorg-10(Ksv-2) YG5760</td>
<td>Variété précoce</td>
<td>Sahel (300-700 mm de pluie) et Savane soudanienne (700-1100 mm de pluie)</td>
<td>1991/IAR-Samaru, Zaria</td>
</tr>
<tr>
<td>Samsorg-2 KSV-3(HP-3)Samsorg-2 KSV-3(HP-3)</td>
<td>Variété précoce</td>
<td>Sahel (300-700 mm de pluie) et Savane soudanienne (700-1100 mm de pluie)</td>
<td>1991/IAR-Samaru, Zaria</td>
</tr>
<tr>
<td>Samsorg-3 KSV-4(B-ES)</td>
<td>Variété précoce, tolérante au Striga avec de bonnes aptitudes organoleptiques</td>
<td>Sahel (300-700 mm de pluie) et Savane soudanienne (700-1100 mm de pluie)</td>
<td>1991/IAR-Samaru, Zaria</td>
</tr>
<tr>
<td>Samsorg-4 KSV-9(HP-8)</td>
<td>Variété précoce, tolérante au Striga</td>
<td>Sahel (300-700 mm de pluie) et Savane soudanienne (700-1100 mm de pluie)</td>
<td>1991/IAR-Samaru, Zaria</td>
</tr>
<tr>
<td>Samsorg-11 KSV-5 (KBL)</td>
<td>Variété précoce</td>
<td>Sahel (300-700 mm de pluie) et Savane soudanienne (700-1100 mm de pluie)</td>
<td>1991/IAR-Samaru, Zaria</td>
</tr>
</tbody>
</table>

.../...
<table>
<thead>
<tr>
<th>Variété</th>
<th>Description</th>
<th>Zones d'utilisation</th>
<th>Année d'obtention</th>
<th>Centre de distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samsorg-5 KVS-11 (E7A3143)</td>
<td>Variété extra-précoce, tolérante au ‘dwarf’ du sorgho</td>
<td>Sahel (300-700 mm de pluie) et Savane soudanienne (700-1100 mm de pluie)</td>
<td>1991</td>
<td>IAR-Samaru, Zaria</td>
</tr>
<tr>
<td>Samsorg-24 SS-10 (L533)</td>
<td>Variété précoce, tolérante au Striga et ayant un bon rendement. Variété utilisée pour la fabrication de bière</td>
<td>Sahel (300-700 mm de pluie) et Savane soudanienne (700-1100 mm de pluie)</td>
<td>1982</td>
<td>IAR-Samaru, Zaria</td>
</tr>
<tr>
<td>Samsorg-7 KSV-13 (L2007/79)</td>
<td>Variété précoce (90 jours), tolérante au Striga</td>
<td>Sahel (300-700 mm de pluie) et Savane soudanienne (700-1100 mm de pluie)</td>
<td>1991</td>
<td>IAR-Samaru, Zaria</td>
</tr>
<tr>
<td>Samsorg-8 KSV-14 (L2024/79)</td>
<td>Variété précoce (90 jours)</td>
<td>Sahel (300-700 mm de pluie) et Savane soudanienne (700-1100 mm de pluie)</td>
<td>1991</td>
<td>IAR-Samaru, Zaria</td>
</tr>
<tr>
<td>Samsorg-41 (ICSV-111)</td>
<td>Variété tolérante à la sécheresse, avec des grains durs adaptés aux mets locaux, ayant un bon rendement</td>
<td>Sahel (300-700 mm de pluie) et Savane soudanienne (700-1100 mm de pluie)</td>
<td>1996</td>
<td>IAR-Samaru, Zaria</td>
</tr>
<tr>
<td>Samsorg-38 (NR-71176nr-71176)</td>
<td>Variété précoce ayant un rendement élevé</td>
<td>Sahel (300-700 mm de pluie) et Savane soudanienne (700-1100 mm de pluie)</td>
<td>1996</td>
<td>IAR-Samaru, Zaria</td>
</tr>
<tr>
<td>Samsorg-39 (NR-71182)</td>
<td>Variété précoce ayant un rendement élevé</td>
<td>Sahel (300-700 mm de pluie) et Savane soudanienne (700-1100 mm de pluie)</td>
<td>1996</td>
<td>IAR-Samaru, Zaria</td>
</tr>
<tr>
<td>Samsorg-42 (NSSH-91001)</td>
<td>Variété précoce ayant un rendement élevé</td>
<td>Sahel (300-700 mm de pluie) et Savane soudanienne (700-1100 mm de pluie)</td>
<td>1996</td>
<td>IAR-Samaru, Zaria</td>
</tr>
<tr>
<td>Samsorg-43 (NSSH-91002)</td>
<td>Variété précoce ayant un rendement élevé</td>
<td>Sahel (300-700 mm de pluie) et Savane soudanienne (700-1100 mm de pluie)</td>
<td>1996</td>
<td>IAR-Samaru, Zaria</td>
</tr>
</tbody>
</table>

.../...
Tableau 2 : *(suite 4 et fin)*

<table>
<thead>
<tr>
<th>CSR-03 H</th>
<th>Variété extra-précoce ayant un rendement élevé. Variété de petite taille adaptée à la mécanisation. Variété pouvant demeurer vert, est utilisée dans les industries de fabrication de bière</th>
<th>Sahel (300-700 mm de pluie) et Savane soudanienne (700-1100 mm de pluie)</th>
<th>1996/IAR-Samaru, Zaria</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSR-04 H</td>
<td>Variété précoce ayant un rendement élevé. Variété pouvant demeurer vert, est utilisée dans les industries de fabrication de bière</td>
<td>Sahel (300-700 mm de pluie) et Savane soudanienne (700-1100 mm de pluie)</td>
<td>1996/IAR-Samaru, Zaria</td>
</tr>
</tbody>
</table>

3.1.3 Le Maïs

Le maïs (Zea mays) est la céréale la plus cultivée et consommée en Afrique subsaharienne. Les structures de recherche au plan national et international ont mis au point des variétés de maïs adaptées aux zones sèches avec des rendements dépassant les rendements moyens actuels des producteurs de la région. Les principaux pays producteurs de la zone semi-ardide de l’Afrique de l’Ouest sont : le Nigeria, le Mali et le Burkina Faso.

Les variétés de maïs sont extra précoces (85 jours de maturité) ou précoces (90 jours) tolérantes à la sécheresse et aux espèces *Striga* qui une contrainte majeure à la production de maïs en zone de savane où les sols sont pauvres en éléments nutritifs. Les espèces *Striga hermonthica* et *Striga aspera* sont les plus répandues dans les zones de savane de l’Afrique de l’Ouest. Certaines variétés de maïs riches en protéines (Quantités élevées de lysine et de tryptophane) contribuent à la lutte contre la malnutrition.

Source : Dr Akanvou Louise
<table>
<thead>
<tr>
<th>Nom de la variété</th>
<th>Caractéristiques de la variété</th>
<th>Zone d'adaptation production</th>
<th>Date d'inscription au catalogue / Mainteneur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sammaz 18</td>
<td>Variété à pollinisation libre, précoce, tolérante au Striga.</td>
<td>Savane soudanienne et Guinéenne (700-1500 mm de pluie)</td>
<td>2009/IITA –IAR, Samuru</td>
</tr>
<tr>
<td>Sammaz 20</td>
<td>Variété à pollinisation libre, précoce, tolérante à la sécheresse et au Striga</td>
<td>700-1500 mm de pluie</td>
<td>2009/ IITA –IAR, Samuru</td>
</tr>
<tr>
<td>Sammaz 27</td>
<td>Variété à pollinisation libre précoce, tolérante à la sécheresse</td>
<td>700-1500 mm de pluie</td>
<td>2009/ IITA –IAR, Samuru</td>
</tr>
<tr>
<td>Sammaz 28</td>
<td>Variété à pollinisation libre, extra précoce, tolérante au Striga</td>
<td>700-1500 mm de pluie</td>
<td>2009/ IITA –IAR, Samuru</td>
</tr>
<tr>
<td>Sammaz 29</td>
<td>Variété à pollinisation libre, extra précoce, tolérante au Striga</td>
<td>700-1500 mm de pluie</td>
<td>2009/ IITA –IAR, Samuru</td>
</tr>
<tr>
<td>Sammaz 32</td>
<td>Variété à pollinisation libre, extra précoce, tolérante à la sécheresse et au Striga, riche en protéine</td>
<td>700-1500 mm de pluie</td>
<td>2011/ IITA –IAR, Samuru</td>
</tr>
<tr>
<td>Sammaz 33</td>
<td>Variété à pollinisation libre, extra précoce, tolérante à la sécheresse et au Striga, riche en protéine</td>
<td>700-1500 mm de pluie</td>
<td>2011/ IITA –IAR, Samuru</td>
</tr>
<tr>
<td>Sammaz 34</td>
<td>Variété à pollinisation libre précoce, tolérante à la sécheresse et prolifique (plusieurs épis)</td>
<td>700-1500 mm de pluie</td>
<td>2011/ IITA –IAR, Samuru</td>
</tr>
<tr>
<td>Sammaz 35</td>
<td>Variété à pollinisation libre, précoce, tolérante à la sécheresse et au Striga</td>
<td>700-1500 mm de pluie</td>
<td>2011/ IITA –IAR, Samuru</td>
</tr>
<tr>
<td>Sammaz 38</td>
<td>Variété à pollinisation libre, extra précoce, tolérante à la au Striga, riche en protéine</td>
<td>700-1500 mm de pluie</td>
<td>2011/ IITA –IAR, Samuru</td>
</tr>
</tbody>
</table>

.../...
Tableau 3 : (suite 1)

<table>
<thead>
<tr>
<th>Mali</th>
<th>Niger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jorobana</td>
<td>Maka</td>
</tr>
<tr>
<td>Variété à pollinisation libre, précoce, tolérante à la sécheresse</td>
<td>Variété précoce à pollinisation libre</td>
</tr>
<tr>
<td>Savane soudanienne et Guinéenne (700-1500 mm de pluie)F</td>
<td>Zone soudanienne (600 mm de pluie/an)</td>
</tr>
<tr>
<td>2009/IITA-Brico</td>
<td>1994/INRAN</td>
</tr>
<tr>
<td>Brico</td>
<td>EV8422-RS</td>
</tr>
<tr>
<td>Variété à pollinisation libre, extra précoce, tolérante à la sécheresse et au Striga</td>
<td>Variété tardive à pollinisation libre</td>
</tr>
<tr>
<td>700-1500 mm de pluie</td>
<td>Zone soudanienne (600 mm de pluie/an)</td>
</tr>
<tr>
<td>2010</td>
<td>2010</td>
</tr>
<tr>
<td>Sanu</td>
<td>CET</td>
</tr>
<tr>
<td>Variété hybride, précoce, tolérante à la sécheresse</td>
<td>Cycle semis–maturité (50%): 85-90 jours</td>
</tr>
<tr>
<td>700-1500 mm de pluie</td>
<td>hauteur de plantes : 150-200 cm</td>
</tr>
<tr>
<td>2012</td>
<td>recouvrement de l’épi: bon</td>
</tr>
</tbody>
</table>

Notes:
- Jorobana : Variété à pollinisation libre, précoce, tolérante à la sécheresse.
- Brico : Variété à pollinisation libre, extra précoce, tolérante à la sécheresse et au Striga.
- Sanu : Variété hybride, précoce, tolérante à la sécheresse.
- Maka : Variété précoce à pollinisation libre.
- EV8422-RS : Variété tardive à pollinisation libre.

Notes de界：
- Jorobana : Variété à pollinisation libre, précoce, tolérante à la sécheresse.
- Brico : Variété à pollinisation libre, extra précoce, tolérante à la sécheresse et au Striga.
- Sanu : Variété hybride, précoce, tolérante à la sécheresse.
- Maka : Variété précoce à pollinisation libre.
- EV8422-RS : Variété tardive à pollinisation libre.
3.1.4 Le Riz

Le Riz (*Oryza spp.*) est la céréale la plus cultivée dans le monde (environ 150 millions d’hectares). Elle constitue l’aliment de base de plus de la moitié de l’humanité. Il existe seulement deux espèces cultivées dans le monde, à savoir *Oryza sativa* (Riz de l’Asie) et *Oryza glaberrima* (Riz Africain). Le riz est la première céréale consommée en Afrique de l’Ouest (26%) devant le mil (25%), le maïs (24%) et le sorgho (18%). Plusieurs variétés de riz sont adaptées aux différentes zones écologiques (pluvial, bas-fonds, irrigué, submersion) en Afrique de l’Ouest.

Le riz est également une culture stratégique du point de vue économique car elle est génératrice de revenus pour les populations rurales et contribue de façon substantielle à la lutte contre la pauvreté. Les sous-produits de transformation (brisure, farine, tourteau) et la paille sont utilisés en alimentation animale.

Source : Dr Akanvou Louise
<table>
<thead>
<tr>
<th>Nom de la variété</th>
<th>Caractéristiques de la variété</th>
<th>Zone d'adaptation production</th>
<th>Date d'inscription au catalogue / Mainteneur</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIGER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FKR-18</td>
<td>Nature génétique: lignée</td>
<td>Ecosystème de production:</td>
<td>2010/INERA</td>
</tr>
<tr>
<td></td>
<td>Type variétal: Oryza sativa</td>
<td>irrigué/bas-fond</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cycle semis-maturité (50%): 120 jours</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type de grains: court</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rendement potentiell: 7 t/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variété très sensible à la virose (rymv)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KOGONI</td>
<td>Nature génétique: lignée</td>
<td>Ecosystème de production:</td>
<td>2010/INERA</td>
</tr>
<tr>
<td>(Gambiaca)</td>
<td>Type variétal: Oryza sativaindica,</td>
<td>irrigué/bas -fond</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cycle semis maturité (50%): 160 jours</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type de grains: moyen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rendement potentiell: 5 t/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variété sensible à la photopériode, à la verse et à la Pyriculariose.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NERICA-L-49</td>
<td>Nature génétique: lignée</td>
<td>Ecosystème de production:</td>
<td>2010/Africa Rice/INERA</td>
</tr>
<tr>
<td></td>
<td>Type variétal: Oryza sativax Oryza glaberrima</td>
<td>irrigué/bas-fond</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cycle semis-maturité (50%): 140 jours</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type de grains: moyen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rendement potentiell: 8 t/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variété résistante à la verse, à la pyriculariose et à la panachure jaune</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIGERIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FARO-55</td>
<td>Variété précoce à haut rendement, tolérante à la sécheresse et à la verse</td>
<td>Ecosystème de production: irrigué /bas-fond</td>
<td>2005/ Africa Rice-NCRI</td>
</tr>
<tr>
<td>(NERICA 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FARO-56</td>
<td>Variété précoce à haut rendement, tolérante à la verse</td>
<td>Ecosystème de production: irrigué /bas-fond</td>
<td>2005/ Africa Rice-NCRI</td>
</tr>
<tr>
<td>(NERICA 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FARO-56</td>
<td>Variété précoce à haut rendement, tolérante à la verse</td>
<td>Ecosystème de production: irrigué /bas-fond</td>
<td>2011/ Africa Rice-NCRI</td>
</tr>
<tr>
<td>(NERICA 7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FARO-59</td>
<td>Variété précoce à haut rendement, tolérante à la verse. Grains fins</td>
<td>Ecosystème de production: irrigué/bas-fond</td>
<td>2011/ Africa Rice-NCRI</td>
</tr>
<tr>
<td>(NERICA 8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-34)</td>
<td>Variété précoce à haut rendement, tolérante à la verse</td>
<td>Ecosystème de production: irrigué/bas-fond</td>
<td>2011/ Africa Rice-NCRI</td>
</tr>
</tbody>
</table>
3.2 Les Légumineuses

3.2.1 Le Niébé

Les superficies emblavées en Afrique subsaharienne sont de l’ordre de 10 millions d’Ha avec un rendement moyen de 340Kg/ha. Les contraintes à la production du niébé en Afrique de l’Ouest sont entre autres, les espèces Striga et Alectra, la mosaïque.

Source : IITA, Dr Fatokun
Tableau 5: Variétés améliorées de niébé cultivées au Niger et Nigeria

<table>
<thead>
<tr>
<th>Nom de la variété</th>
<th>Caractéristiques de la variété</th>
<th>Zone d’adaptation</th>
<th>Date d’inscription au catalogue / Mainteneur</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT99K-573-1-1</td>
<td>Nature génétique : lignée Cycle semis maturité 65-70 jours Type de floraison étalé Port de la plante semi-rampant Couleur des graines : blanche Rendement potentiel en graine 2 T/ha Variété tolérante à la sécheresse et au Striga/ Sensible au puceron, punaise, punaise des gousses et bruches.</td>
<td>Pluviométrie : 300-600 mm</td>
<td>2012/IITA, INRAN</td>
</tr>
<tr>
<td>Variety</td>
<td>Description</td>
<td>Pluviométrie: 300-600 mm</td>
<td>Country</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>--------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>SAMPEA-5</td>
<td>Variété précoce avec de bonnes qualités organoleptiques, tolérante puceron, trips, punaise/</td>
<td>Savane soudanienne</td>
<td>NIGERIA</td>
</tr>
<tr>
<td>SAMPEA-8</td>
<td>Variété extra-précoce, tolérante puceron, trips, punaise. Variété avec de bonnes qualités organoleptiques</td>
<td>Savane soudanienne</td>
<td>NIGERIA</td>
</tr>
<tr>
<td>SAMPEA-10</td>
<td>Variété extra-précoce, tolérante au Striga et à Alectra. Tolérante au puceron, trips, punaise. avec de bonnes qualités organoleptiques</td>
<td>Savane soudanienne</td>
<td>NIGERIA</td>
</tr>
<tr>
<td>SAMPEA-15</td>
<td>Variété tolérante à la sécheresse, au Striga et à Alectra, à la Fusariose. avec de bonnes qualités organoleptiques</td>
<td>Savane soudanienne</td>
<td>NIGERIA</td>
</tr>
</tbody>
</table>
3.2.3 L’arachide

L’arachide (Arachis villosulicarpa) est la quatrième source d’huile (48%) comestible, C’est une protéagineuse riche en protéine (25-28% du poids), en vitamines B et E. Il est cultivé dans les pays en développement de l’Asie, l’Afrique et de l’Amérique du Sud qui représentent 97% de superficie emblavées pour 95% de la production mondiale. Le Nigeria et le Sénégal sont les plus gros producteurs d’arachide en Afrique de l’Ouest et du Centre avec 45% de la production africaine. Le Mali, le Burkina Faso et le Niger sont aussi d’importants pays producteurs d’arachide.

Source : Dr Akanvou Louise
Tableau 6 : Variétés améliorées d’arachide adaptées au Niger et au Nigeria

<table>
<thead>
<tr>
<th>Nom de la variété</th>
<th>Caractéristiques de la variété</th>
<th>Zone d’adaptation</th>
<th>Date d’inscription au catalogue / Mainteneur</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIGER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55-437 (El Dakar)</td>
<td>Lignée</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cycle semis-maturité (50%): 85-90 jours</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Port des plantes: érigé</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Couleur des graines: rose</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rendement potentiel : 2 t/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Teneur en huile : 50 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variété tolérante à la sécheresse ; sensible à la cercosporiose, aux pucerons. Bonne qualité fourragère des fanes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pluviométrie : 400-700 mm</td>
<td></td>
<td>1984/INRAN, ICRISAT</td>
</tr>
<tr>
<td>Fleur 11</td>
<td>Lignée</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cycle semis-maturité (50%): 90-100 jours</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Port des plantes: erigé</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Couleur des graines: rose pâle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rendement potentiel : 2 t/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Teneur en huile : 50 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variété tolérante à la sécheresse ; sensible à la cercosporiose, aux pucerons. Bonne qualité fourragère des fanes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pluviométrie : 400-700 mm</td>
<td></td>
<td>2010/INRAN, ICRISAT, ISRA</td>
</tr>
<tr>
<td>ICG-9346</td>
<td>Lignée</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cycle semis-maturité (50%): 90-100 jours</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Port des plantes: erigé</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Couleur des graines: rose</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Poids de 100 grains: 36-40 grammes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rendement potentiel : 2 à 2,5 t/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Teneur en huile : 45-49 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variété tolérante à la sécheresse</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pluviométrie : 400-700 mm</td>
<td></td>
<td>2010/INRAN, ICRISAT</td>
</tr>
</tbody>
</table>
Tableau 6 : (suite)

<table>
<thead>
<tr>
<th>Lignée</th>
<th>Cycle semis maturité (50%): 100 jours</th>
<th>Port des plantes: erigé</th>
<th>Couleur des graines: rose</th>
<th>Rendement potentiel : 1,7 à 2 t/ha</th>
<th>Teneur en huile : 42-45 %</th>
<th>Variété tolérante à la sécheresse ; à l’aflatoxine et à la rosette.</th>
<th>Pluviométrie ≥ 450 mm</th>
<th>2010/INRAN, ICRISAT, ISRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>J11</td>
<td>Lignée</td>
<td>Cycle semis-maturité (50%): 90 jours</td>
<td>Port des plantes: erigé</td>
<td>Couleur des graines: rose</td>
<td>Poids de 100 grains: 50-55 grammes</td>
<td>Rendement potentiel : 2 à 2,5 t/ha</td>
<td>Variété tolérante à la sécheresse ; à l’aflatoxine et à la rosette.</td>
<td>Pluviométrie ≥ 550 mm</td>
</tr>
<tr>
<td>JL-24</td>
<td>Lignée</td>
<td>Cycle semis-maturité (50%): 90 jours</td>
<td>Port des plantes: erigé</td>
<td>Couleur des graines: rouge</td>
<td>Rendement potentiel : 2 à 2,5 t/ha</td>
<td>Variété tolérante à la sécheresse ; à l’aflatoxine et à la rosette.</td>
<td>Pluviométrie : 400-700 mm</td>
<td>2010/INRAN, ICRISAT</td>
</tr>
<tr>
<td>RRB (Resistant Red Bulk)</td>
<td>Lignée</td>
<td>Cycle semis-maturité (50%): 90 jours</td>
<td>Port des plantes: erigé</td>
<td>Couleur des graines: rouge</td>
<td>Rendement potentiel : 2 à 2,5 t/ha</td>
<td>Variété tolérante à la sécheresse ; à l’aflatoxine et à la rosette.</td>
<td>Pluviométrie : 400-700 mm</td>
<td>2010/INRAN, ICRISAT</td>
</tr>
</tbody>
</table>

NIGERIA

<table>
<thead>
<tr>
<th>Variété précoce, à haut rendement, tolérante à la rosette</th>
<th>Zone savane soudanienne</th>
<th>2001/IAR Samaru, Zaria</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMNUT 21 (UGA 2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variété précoce, à haut rendement, tolérante à la rosette</th>
<th>Zone savane soudanienne</th>
<th>2001/IAR Samaru, Zaria</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMNUT 22 (M 572.80I)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variété extra-précoce, à haut rendement, tolérante à la rosette</th>
<th>Zone savane soudanienne</th>
<th>2001/IAR Samaru, Zaria</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMNUT 23 (ICGVIS 96894)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.2.4 Le sésame

Sésame (Sesamum indicum) est essentiellement une culture de rente c’est-à-dire que la majorité de la production est vendue pour l’exportation.

Le sésame connaît un fort développement dans les pays subsahariens du fait de sa culture facile et des faibles coûts de production. Le sésame est une culture adaptée aux régions d’au moins 400 mm de pluie et peut être produit en culture pure ou en association avec le mil. L’Afrique est depuis 1995, passée au deuxième rang mondial avec 25% de la production mondiale. Le sésame y est cultivé dans 23 pays avec le Soudan, l’Ouganda et le Nigeria comme plus gros producteurs.
Tableau 7 : Variétés améliorées de sésame adaptées au Niger

<table>
<thead>
<tr>
<th>Nom de la variété</th>
<th>Caractéristiques de la variété</th>
<th>Zone d'adaptation</th>
<th>Date d'inscription au catalogue / Mainteneur</th>
</tr>
</thead>
<tbody>
<tr>
<td>S N -103</td>
<td>Lignée Cycle semis maturité : 80 jours Couleur : Blanche Port des plants : Erigé Rendement : 1,5 t/ha</td>
<td>Pluviométrie : 400 mm</td>
<td>2012/INRAN</td>
</tr>
<tr>
<td>S N -203</td>
<td>Lignée Cycle semis maturité : 75 jours Couleur : Blanche Port des plants : Erigé Rendement : 1,5 t/ha</td>
<td>Pluviométrie : 400 mm</td>
<td>2012/INRAN</td>
</tr>
<tr>
<td>S N -303</td>
<td>Lignée Cycle semis maturité : 80 jours Couleur : Blanche Port des plants : Erigé Rendement : 1,5 t/ha</td>
<td>Pluviométrie : 400 mm</td>
<td>2012/INRAN</td>
</tr>
<tr>
<td>S N -403</td>
<td>Lignée Cycle semis maturité : 80 jours Couleur : Blanche Port des plants : Erigé Rendement : 1,5 t/ha</td>
<td>Pluviométrie : 400 mm</td>
<td>2012/INRAN</td>
</tr>
</tbody>
</table>
3.3 Les racines et tubercules

3.3.1 Le Manioc

Le manioc (Manihot esculenta, est largement cultivé dans la plupart des pays tropicaux de la ceinture Equatoriale. Le manioc est une culture flexible et adaptable à des écosystèmes très différents. Sa tolérance à la sécheresse et à des sols pauvres, sa très grande flexibilité en ce qui concerne les périodes de mise en terre et de récolte font qu’il peut jouer un rôle essentiel dans la sécurité alimentaire. Le manioc est largement consommé et cultivé à travers l’Afrique subsaharienne. Les plus grands producteurs en Afrique subsaharienne sont: le Nigeria (52 Mt en 2011), la République Démocratique du Congo (15 Mt) et la Côte d’Ivoire (2,5 Mt).

Le manioc est une plante résistante à la sécheresse qui nécessite peu de préparation de la terre et se cultive même sur des sols pauvres. Parmi les 43 variétés homologuées et diffusées au Nigeria, quatre variétés précoces et tolérantes à la sécheresse sont listées dans le tableau ci-dessous. Au Niger, une variété populaire 4 (2) 1425 est décrite dans le tableau.

Source : Dr Akanvou Louise
Tableau 8 : Variétés améliorées de sésame adaptées au Niger

<table>
<thead>
<tr>
<th>Nom de la variété</th>
<th>Caractéristiques de la variété</th>
<th>Zone d’adaptation</th>
<th>Date d’inscription au catalogue / Mainteneur</th>
</tr>
</thead>
<tbody>
<tr>
<td>NICASS 27 (TMS 92/0326°)</td>
<td>Variété précoce à haut rendement, qui peut être cultivée en association avec d’autres cultures. Utilisée pour l’alimentation humaine et dans les industries.</td>
<td>Savanes soudanienne et Guinéenne</td>
<td>2006/IITA-NRCRI</td>
</tr>
<tr>
<td>NICASS 29 (TMS 92/0326)</td>
<td>Variété précoce à haut rendement, utilisée pour l’alimentation humaine et dans les industries.</td>
<td>Savanes soudanienne et Guinéenne</td>
<td>2006/IITA-NRCRI</td>
</tr>
<tr>
<td>UMUCASS 32</td>
<td>Variété précoce à haut rendement, tolérante à la sécheresse, utilisée pour l’alimentation humaine et dans les industries.</td>
<td>Savanes soudanienne et Guinéenne</td>
<td>2010/NRCRI</td>
</tr>
<tr>
<td>UMUCASS 40</td>
<td>Variété précoce à haut rendement, tolérante à la sécheresse, utilisée pour l’alimentation humaine.</td>
<td>Savanes soudanienne et Guinéenne</td>
<td>2011/NRCRI</td>
</tr>
</tbody>
</table>

NIGERIA

NIGER

<table>
<thead>
<tr>
<th>Nom de la variété</th>
<th>Caractéristiques de la variété</th>
<th>Zone d’adaptation</th>
<th>Date d’inscription au catalogue / Mainteneur</th>
</tr>
</thead>
</table>
Ces techniques ont eu des impacts non négligeables du point de vue des ressources naturelles. Il a été démontré que la collecte de l’eau permet d’augmenter les récoltes, d’accroître le revenu, d’améliorer la place de la production agricole parmi les diverses activités sources de revenu, et peut même contribuer à la prévention de la migration hors des zones marginales ou ralentir celle-ci. Depuis le début des années 1980 au Niger, 250 000 ha de terres fortement dégradées ont été récupérées en utilisant les techniques simples comme les tranchées, les zaï, les demi-lunes et les cordons pierreux.

4.1 Les diguettes anti-érosives : Il s’agit de mesures physiques de conservation des eaux et des sols tels que les cordons pierreux et les diguettes en terre. Les diguettes en terre sont des ouvrages imperméables, qui retiennent toute l’eau et favorisent son infiltration maximale. Compte tenu de leur moindre efficacité, les diguettes en terre ne sont utilisées que lorsque les conditions ne permettent pas de réaliser les ouvrages en pierre. Les cordons pierreux, à la différence des diguettes en terre qui bloquent la lame d’eau ruisselée, sont des obstacles filtrants qui ralentissent la vitesse de ruissellement. Ils permettent la sédimentation et le dépôt, des particules (sables, mais aussi la terre fine, la matière organique) à l’amont de la diguette et une augmentation de l’infiltration des eaux des eaux ruisselantes.

4.2 La technique de « Zaï » : La méthode des poches d’eau, encore appelée zaï, (ou zay), est une technique traditionnelle utilisée au Yatenga (nord du Burkina Faso) entre 1982 et 1984, à la suite des années de sécheresse. Le zaï signifie en moré « se lever tôt et se hâter pour préparer
sa terre » ou encore « casser et émietter la croûte du sol avant les semis ». Des micro-bassins de 10 à 20 cm ou encore 20 à 40 cm de diamètre, de 10 à 15 cm de profondeur et distants de 0,5 à 1 m sont creusés en saison sèche, enrichis en fumier, recouverts d’une pellicule de terre et ensemencés lors des premières pluies. L’eau qui se concentre et s’infiltre offre aux graines un sol humide : la plante germe, lève rapidement et s’enracine bien ; à l’état de plantule, elle est protégée contre le vent. Cette technique est aussi un moyen d’éviter les croûtes de battance (la formation d’une croûte de battance supprime toute infiltration des eaux de pluie et déclenche rapidement le ruissellement). Les conditions optimales pour le zaï se trouvent dans la zone soudano sahélienne (300 à 800 mm).

4.3 **La technique de la demi-lune**

La technique de la demi-lune est une variante de la méthode des Zaï : un trou en contre-pente est creusé, les déblais donnent le remblai arqué à l’amont suivant les courbes de niveau. Les demi-lunes sont disposées en courbes de niveau, en quinconce et recueillent le ruissellement de l’eau qui s’infiltre. Elles sont réalisées sur des glacis recouverts d’une croûte dure quelques cm, qui empêche l’eau de s’infilttrer. Les cuvettes, de 4 m de diamètre et de 15 à 25 cm de profondeur, sont décalées d’une ligne à l’autre de sorte que chaque demi-lune ait un impluvium utile de 4m². L’écartement est de 4 m entre deux demi-lunes sur la ligne et entre deux lignes successives. La densité moyenne à l’hectare est évaluée à 315 demi-lunes. Elles permettent de collecter les eaux de ruissellement et sont ainsi bien adaptées aux zones semi-arides arides. Les demi-lunes permettent une amélioration des réserves hydriques du sol ainsi qu’une augmentation de la profondeur d’humectation de 20 à 40 cm. Elles accroissent la production agricole et cela d’autant plus qu’on y ajoute un complément minéral ou organique.
4.4 Le défrichement amélioré : C’est une technique qui vise à faire en sorte que l’exploitation du milieu ne soit pas synonyme de destruction totale du capital sol. Le « défrichement amélioré » consiste à ne pas déraciner ou couper au ras du sol les arbustes et arbrisseaux, lors du désherbage ; à gérer rationnellement les rejets (usages à buts multiples : fourrage, bois énergie, matière première pour la vannerie…) issus des arbustes et arbrisseaux. En particulier, il importe lors de l’exploitation des rejets de laisser au moins 2 à 3 rejets (tire-sève) par arbuste ou arbrisseau afin de leur permettre de poursuivre plus facilement la reprise de la végétation.

4.5 Techniques de conservation des eaux des sols et technique collecte des eaux pluviales

L’ICRISAT a développé un système de bio récupération des terres dégradées afin de convertir les sols dégradés en terres fertiles par la combinaison des moyens biophysiques : Les légumineuses feuilles traditionnelles sont plantées dans trous de Zaï à 1x1m d’intervalle entre les cultures pérennes. L’arbuste *Ziziphus mauritiana* ("Pomme du Sahel") est souvent utilisé dans ces systèmes de culture.
Système intégré d’arbres-cultures-élevage
Source: ICRISAT, Niamey, Niger

Ziziphus mauritiana ("Pomme du Sahel").
Arbuste beau
Source: ICRISAT, Niamey, Niger
CONCLUSION

L'agriculture Ouest Africaine qui demeure le principal pilier économique de la région présente des atouts favorables à la production de denrées alimentaires en quantité et qualité suffisantes pour couvrir les besoins des populations et accroître leurs revenus et les recettes des pays. En effet elle génère 40% des richesses et crée des emplois directs et indirects (en amont et en aval). Les petits producteurs sont prédominants dans la structure de production. La recherche agricole ouest africaine a mis au point des variétés améliorées et des paquets technologiques adaptés aux climats arides, qui pourraient contribuer à améliorer les productions agricoles dans les zones semi-arides de l’Afrique de l’Ouest où l’eau demeure le principal facteur limitant à la production.

Cependant, l’agriculture en Afrique de l’Ouest se caractérise par une faible productivité de la majorité des exploitations agricoles qui se traduit par des poches d’insécurité alimentaire périodique dans certaines régions arides. La faible fertilité des sols, le coût élevé des intrants, l’absence de services de transport, la faiblesse des investissements et le déficit hydrique sont autant de facteurs qui bloquent l’émergence d’une agriculture ouest africaine performante.

Sur la base des prospectives démographiques, le rapport des études indique que la demande de produits agricoles et d’élevage vont être accrues de 50 % d’ici à 2025, de ’ici à 2030 en Afrique de l’Ouest. Il est donc impératif d’adopter des méthodes agricoles modernes et durables d’intensification et de diversification des cultures, de diffuser les technologies d’adaptation aux changements climatiques et de mettre en place des systèmes de transport et de commercia-
lisation adaptés pour atteindre les objectifs de développement. Afin de renforcer la résilience des agriculteurs face aux changements climatiques, il est important de leur proposer:

- des calendriers agricoles adaptés à variabilité pluviométrique liés aux changements climatiques et au cycle cultural des variétés,
- des variétés adaptées tolérantes au stress hydrique et des variétés à cycle court,
- des techniques de gestion de l’eau et de conservation de sols,
- des techniques d’irrigation ou de complément d’irrigation à partir des eaux de surfaces (fleuves, mares, bassins de rétention, eaux souterraines…)
- des méthodes de gestion de la fertilité des sols
- la diversification des cultures de céréales traditionnelles avec des légumes et fruits très nutritifs et à forte valeur ajoutée grâce à l’irrigation goutte-à-goutte. Cela contribue à lutter contre la pauvreté et l’insécurité alimentaire.

Le défi majeur est de rendre disponibles les intrants agricoles (semences, engrais et produits phytosanitaires) aux agriculteurs. L’accès aux intrants (engrais, semences, produits phytosanitaires) de qualité, en quantité, à temps et à un prix supportable, conditionne pour une grande partie la performance des systèmes de culture en termes d’augmentation des rendements.

Concernant les engrais, les chefs d’État de la CEDEAO ont convenu lors d’un sommet en 2006 à Abuja, de relever le niveau d’utilisation des engrais à 50 kg/hectare d’ici l’horizon 2015. Mais force est de constater qu’aucun des Etats concernés ne pourra atteindre cet objectif. L’amélioration du niveau d’utilisation est donc un facteur préoccu-
pant qui impacte directement la production agricole et donc les richesses générées et la sécurité alimentaire. Une des voies est de subventionner les engrais afin d’améliorer sa disponibilité et son accessibilité.

Concernant les semences, des efforts ont été faits au niveau des états de la CEDEAO qui ont proposé des textes régissant les semences dans la région. Dans les pays de l’Afrique de l’Ouest, Il existe trois systèmes de production de semences que sont le système de production formel, le système traditionnel et l’approche production communautaire de semences. La contrainte majeure est de rendre accessible aux producteurs, des variétés développées dans les centres de recherche. Pour cela il faudrait:

- Développer des plateformes et mettre en place des subventions pour le financement des activités de diffusion de technologies.

- Soutenir les systèmes nationaux de recherche afin que des quantités de semences pré-base et de base de ces variétés améliorées soient produites et mises à la disposition des producteurs semenciers qui à leur tour produiront les semences commerciales en quantité et qualité suffisantes.

- Multiplier les campagnes de sensibilisation, apprendre aux agriculteurs l’importance des semences de qualité.

Hormis les intrants agricoles, une autre contrainte majeure qui se pose à l’agriculture en zone semi-aride de l’Afrique de l’Ouest, généralement pluviale, est la faiblesse des précipitations. Il est donc important de mettre en place des stratégies de diffusion des systèmes adaptées d’irrigation. La réponse des cultures à l’azote dans cette zone dépend de la quantité totale de pluie et aussi de sa distribution.

Selon l’étude FARM, les eaux de surfaces de l’espace CEDEAO sont estimées à 1011,8 milliards de m3 par an.
Elles représentent l’essentiel des ressources en eau renouvelables de la région estimées à 1057,5 milliards de mètres cubes. Tous les pays de la région, hormis le Cap Vert et le Burkina Faso, ont une disponibilité en eau douce renouvelable supérieure à la norme internationale de rareté établie à 1700 m³ par personne et par an. Mais, alors que ces eaux sont exploitables, seulement 19,6 milliards m³ sont drainées à des fins agricoles. Ainsi, moins de 2 % des eaux de surface sont mobilisées annuellement à des fins agricoles. Il faudrait construire plus de barrages et davantage de retenues d’eau, faire des aménagements de bas fonds et d’aval de plans d’eau, afin de sécuriser la production agricole et affranchir celle-ci des aléas pluviométriques. En outre il est important de développer des projets agricoles et les financements pour l’acquisition de matériels d’irrigation qui sont le plus souvent hors de portée des agriculteurs.
RESUME DES CONCLUSIONS DE L’ATELIER DE VALIDATION

Les 12 et 13 décembre 2013, s’est tenu à l’hôtel Palm Beach de Ouagadougou un atelier de validation sur l’étude intitulée «Changement climatique et intrants agricoles en Afrique avec un accent particulier sur les variétés tolérantes à la sécheresse: Cas de la zone semi-aride de l’Afrique de l’Ouest». L’atelier était organisé par l’Union Africaine SAFGRAD.

Ont participé à cet atelier, les personnes ressources venus des différents pays de la sous-région et d’Institutions Internationales et Nationales travaillant dans le domaine de la recherche et du développement agricole.

L’atelier s’est déroulé sur la base de sessions plénières et de travaux de groupes suivis de débats étalés sur deux jours. Aux termes des travaux de groupes, des mécanismes et stratégies d’accès aux intrants agricoles ont été proposés et des recommandations ont été faites à l’endroit des états Africains, des structures de recherche et du SAFGRAD.

Mécanismes et stratégies d’accès aux intrants agricoles pour les petits exploitants

Pour accomplir la marche de l’Afrique de l’Ouest vers une politique « faim zéro », un certain nombre de défis restent à relever, il s’agit de :

Au plan des Techniques

♦ Mettre l’accent sur le contexte (pédologique, à travers des groupements, unions et fédérations de producteurs)
- Répertorier les bonnes pratiques de CES/DRS en tenant compte de leur applicabilité et de la capacité d’accès des producteurs aux matériels
- Amener les partenaires (Etats, PTF, secteurs privés) à supporter les coûts d’investissement des technologies
- Mettre l’accent sur l’expansion des techniques, tout en investissant afin de rendre les technologies existantes moins pénibles et aussi pour acquérir de nouvelles technologies et de nouveaux équipements
- Faire une fiche technique pour chaque technologie et voir la possibilité de démultiplier les technologies à grand échelle
- Renforcer les capacités des acteurs à travers des modules spécifiques liés aux technologies et aux équipements acquis
- Mettre en place des Plateformes d’innovation (multi-acteurs où tous les acteurs sont impliqués au même degré de la mise en œuvre des actions, ex. : cas de la production des semences)

Au plan des Systèmes Semenciers
- Encourager les pays à avoir des politiques semencières
- Encourager les pays à avoir des catalogues de semences
- Appuyer à la recherche pour la disponibilité des semences de pré-base et de base de qualité
- Renforcer les capacités des services de vulgarisation dans le cadre de la diffusion et le contrôle des semences
- Promouvoir le secteur privé dans la production et la dissémination des semences adaptées les pays
- Renforcer les capacités des petits producteurs de semences (infrastructures de stockage, le désenclavement des zones)
• Mettre l’accent sur les actions de sensibilisation, information et communication au niveau de tous les acteurs

• Mettre en place un système de coordination (plateforme d’innovation) entre les différents acteurs du système semencier (Etat, chercheur, secteur privé et OP)

Pour les engrais

• Accès aux engrais (prix, disponibilité et qualité)
• Encourager les pays à mettre en place des usines de fabrication des engrais
• Encourager les pays à exploiter les RN (gisements de phosphate)
• Renforcer les capacités des producteurs pour l’utilisation et l’application des engrais (chimique et organique)

Recommandations

• Faciliter l’accès des techniques/technologies aux petits producteurs
• Développer un système de Communication et de coordination entre les différents acteurs
• Adapter les technologies existantes en tenant compte de leur pénibilité
• Capitaliser les acquis disponibles au niveau des institutions de recherche (INERA et autres)
• Faire ressortir les aspects spécifiques liés au genre, surtout que les femmes occupent une place importante dans le secteur agricole.
REFERENCES BIBLIOGRAPHIQUES

- FAO, 2004. Fertilizer development in support of the Comprehensive Africa Agriculture Development Programme. 23ème conférence régionale, FAO.

• OCDE/CSAO, 2010. Climat, changements climatiques et pratiques agro-pastorales en zone sahélienne

• Réseau National des Chambres d’Agriculture (RECA). Systèmes de production rédigés dans le cadre de la mise en œuvre de la SDR (septembre 2004).

• UEMOA, 2006. Stratégie Régionale de Promotion des Engrais en Afrique de l’Ouest

ANNEXE 1 : Organisation du questionnaire

I- INFORMATION GENERALE

1.1 Pays :

1.2 Nom et adresse complète de l'institution (y compris le mail et les numéros de téléphone et fax):

1.3 Nom et adresse complète de la personne ressource (y compris le mail et les numéros de téléphone et fax):

1.4 Spécialité de la personne ressource :

II- CARACTERISTIQUES DE LA TECHNOLOGIE

2.1 Changement climatique : Qu’est-ce pour l’interlocuteur ? Quels sont les effets du changement climatiques ?

2.2 Description de la technologie

2.2.1 Nom de la technologie

2.2.2 Caractéristiques de la technologie

2.2.3 Quand utilise-t-on cette technologie ?

2.3 Effet de la technologie

2.3.1 Comment la technologie permet-elle de s’adapter au changement climatique ?

1. Prévention des effets du changement climatique
2. Atténuation des effets du changement climatique
3. Renforcement de la résilience au changement climatique
4. Autres

2.3.2 Quels sont les effets de l’application de cette technologie ?

1. Au plan agronomique
2. Au plan environnemental
3. Au plan pastoral
4. Au plan socio-économique
5. Autres
2.4 Comment la technologie a-t-elle été développée ?

<table>
<thead>
<tr>
<th>Sources</th>
<th>Quand ?</th>
<th>Par qui ?</th>
<th>Adoption par d’autres personnes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A l'initiative des agriculteurs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>À travers l’expérimentation / la Recherche</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduite de l’extérieur / À travers un projet</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANNEXE 2
Liste de personnes ressources rencontrées

BURKINA FASO
INERA
Dr Zangré G Roger.
ITS/MRSI
Cellulaire: +226 70 33 31 90
+226 76 61 02 77
Email: gr_zangre@yahoo.fr

Dr Barro-Kondombo Clarisse
INERA/Sari
Sélectionneur sorgho
 Téléphone fixe : +226 50 44 34 53
Email: clarissebk@yahoo.fr

NIGERIA
IITA
Dr Menkir
PMB 5320, Oyo Road, Ibadan 200001
Tel : +234 2 7517472
Email: a.menkir@cgiar.org

Dr Badu Apraku
PMB 5320, Oyo Road, Ibadan 200001
Tel : +234 2 7517472
Email: B.BADU-APRAKU@CGIAR.ORG
Prof. Fatokun
PMB 5320, Oyo Road, Ibadan 200001
Tel : +234 2 7517472
Email: C.FATOKUN@CGIAR.ORG
AfricaRice
Dr Semon Mande
Sélectionneur Riz
PMB 5320, Oyo Road, Ibadan 200001
Tel : +234 2 7517472
Email: M.Semon@cgiar.org

NIGER
ICRISAT
Dr. Mahamadou GANDAH. Représentant Résident-Niger
International Crops Research Institute for the Semi-Arid Tropics
P.O. Box 12404, Niamey-Niger
Email : m.gandah@cgiar.org, m.gandah@icrisatne.ne
Tel bureau : (227) 20732529 ou (227) 20 72 26 26
Mobile : (227)

Dr Bakary Djaby. Senior scientist
International Crops Research Institute for the Semi-Arid Tropics
P.O. Box 12404, Niamey-Niger
Email : b.djaby@cgiar.org
Tel bureau : (227) 20 72 26 26
Mobile : (227) 89161107

Dr Falalou Hamidou. Regional scientist, Grain Legumes/Crop Physiology
Head Genebank
International Crops Research Institute for the Semi-Arid Tropics
P.O. Box 12404, Niamey-Niger
Email : b.djaby@cgiar.org
Tel bureau : (227) 20722529 ou (227) 20 72 26 26
Mobile : (227) 96171446

Dr Patrice Savadogo. Associate professor in Forest Mnagement- Tropical Silviculture
Faculty of Forest Eciences. Swedish University of Agricultural Science
Joint Agroforestry Systems Scientist
International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)
AGRYMET
BP 11011, Niamey, Niger
Email : hnacro@agrhymet.ne
Tel bureau : (227) 20315316
Mobile : (227) 97910739

BAKO Mamane. Expert SIG et Télédétection
BP 11011, Niamey, Niger
Email : m.bako@agrhymet.ne ou mamebako@yahoo.com
Tel bureau : (227) 20315316
Mobile : (227) 90321277

ALFARI Issoufou. Division of Water Control and Fight against Desertification
BP 11011, Niamey, Niger
Email : i.alfari@agrhymet.ne

INRAN
Dr OUENDEBA Botorou. Regional Coordinator of the Production-Marketing program, Niamey, Niger.
Email : bouendeba@yahoo.fr
UNION AFRICAINE SAFGRAD
261, Rue de la culture
01 BP 1783 Ouagadougou 01, Burkina Faso
Tél. + 226 25 31 15 98 / + 226 25 30 60 71
Site Web : http://www.ua-safgrad.org
2013

Changement climatique et intrants agricoles en Afrique avec un accent particulier sur les variétés tolérantes à la sécheresse, Cas de la zone semi-aride de l’Afrique de l’Ouest