

Partenariat pour lutter contre l'aflatoxine en Afrique Parceria para o Controle da Aflatoxina em África الشراكة من أجل مكافحة الافلاتوكسين في أفريقيا

# Aflatoxins: Impact on Livestock and Livestock Trade

ALiCE 2013, 26-28 June 2013

Amare Ayalew (PhD)
Plant Pathologist/Mycotoxicologist, PACA

### What are aflatoxins?

- Fungal metabolites (naturally occurring)
- Produced by strains of Aspergillus flavus and A. parasiticus
- Toxic to humans and animals
- Highly stable compounds, withstand normal food/feed processing procedures



### Aflatoxin contamination

- Occurs preharvest, harvest, storage
- Maize, groundnut, cottonseed and byproducts are highly susceptible but occurs in wide ranging food and feed
- Grass, silage and hay do not contain appreciable levels
- Influenced by drought stress and high temperature, insect damage, and improper harvesting, drying and storage



### The Aflatoxin Challenge in Africa

1. Agriculture and Food security: aflatoxin affects several African staple crops, contaminated food is likely to be consumed by

smallholder farmers and their

25% of the world food supply is contaminated with aflatoxins (FAO, 2000)



www.ipm.iastate.edu



families

### The Aflatoxin Challenge in Africa

2. Health: aflatoxin is linked to cancer, immune-system suppression, growth retardation, liver disease, and death in both humans and domestic animals.



4.5 billion people chronically exposed (WHO, 2004)

**3. Trade:** aflatoxin undermines efforts to streamline SPS issues continent-wide



www.ipm.iastate.edu

64% reduction in food quality in Africa (WHO, 2001)

### Factors in the Aflatoxin Challenge in Africa:

- Conducive climatic conditions
- Traditional crop production practices
- Inadequate harvesting, drying and storage practices
- Policy and institutional capacity
- Lack of awareness





#### Effects of aflatoxins on animals

 Exposure to moderate to high levels of aflatoxins in feed leads to mortality and morbidity (Acute toxicity) – the major organ affected is the liver



www.icrisat.org

 No animal is immune to the acute effects of aflatoxins

### Effects of aflatoxins on animals

- Low dietary concentrations lead to (chronic effects):
  - Decreased milk and egg production
  - Poor weight gain
  - Recurrent infection due to immunity suppression
  - Reduced fertility, abortion, and lowered birth weights

### Effect of aflatoxins on livestock sector

- Productivity of the livestock industry is seriously affected by aflatoxins
- E.g. Production losses to the U.S. poultry and swine industries exceed \$100 million per year
- Aflatoxin regulations restrict flow of animal feed
- Export of dairy, meat and fish products is increasingly subject to aflatoxin testing



#### Levels of AFT occurrence in feed in Africa

| Commodity               | Country      | Incidence | Range<br>(µg/kg) |
|-------------------------|--------------|-----------|------------------|
| Animal feeds            | Kenya        | 703/830   | 0.9-595          |
| Animal feeds            | Sudan        | 36/56     | 4.1-579.9        |
| Animal feeds            | South Africa | 99/108    | 3.2-950          |
| Cottonseed meal         | South Africa | 60/60     | 13.4-75.7        |
| Poultry feed            | Morocco      | 14/21     | 0.05-5.38        |
| Poultry/livestock feeds | Nigeria      | 1/2       | 0.0-67.9         |

Source: Adapted from Anthony et al. (2012)



## Levels of AFT occurrence in high aflatoxin-risk crops in Africa

|            |          | Type of   |           | Range     |
|------------|----------|-----------|-----------|-----------|
| Commodity  | Country  | Aflatoxin | Incidence | (µg/kg)   |
| Groundnut  | DR Congo | AFB1      | 43/60     | 1.5-937   |
|            | Kenya    | AF        | 170/769   | 0-7525    |
| Maize      | Nigeria  | AFB1      | 55/55     | 0-1874    |
|            | Uganda   | AF        | 22/49     | 1.00-1000 |
| Cottonseed | Nigeria  | AFB1      | 3/8       | 0.0-271   |



## Occurrence of aflatoxins in livestock products in Africa

| Commodity   | Country      | Type of Aflatoxin | Incidence | Range<br>(µg/kg) |
|-------------|--------------|-------------------|-----------|------------------|
| Cheese      | Libya        | AFM1              | 15/20     | 0.11-0.52        |
| Cow Milk    | Sudan        | AFM1              | 42/44     | 0.22 - 6.90      |
|             | Kenya        | AFM1              | 474/613   | 0.005-0.78       |
|             | Cameroon     | AFM1              | 10/63     | 0.006-0.527      |
|             | South Africa | AFM1              | 98/114    | Max: 2.07        |
|             | South Africa | AFM1              | 85/85     | Max: 2.48        |
| Egg         | Cameroon     | AF                | 28/62     | 0.002-7.68       |
| Smoke dried |              |                   |           |                  |
| fish        | Nigeria      | AFB1              | 11-Nov    | 1.505-8.11       |

Source: Adapted from Anthony et al. (2012)



### Aflatoxins and Trade: Regulations in the world

Adapted from Dohlman (2003)

| Category                      | Aflatoxin level (ppb) |         | Nr of countries |
|-------------------------------|-----------------------|---------|-----------------|
|                               | Median                | Range   |                 |
| B1 in foodstuffs              | 4                     | 0-30    | 33              |
| B1+B2+G1+G2 in foodstuffs     | 8                     | 0-50    | 48              |
| B1 in foodstuffs for children | 0.3                   | 0-5     | 5               |
| M1 in milk                    | 0.05                  | 0-1     | 17              |
| B1 in feedstuffs              | 20                    | 5-1,000 | 19              |
| B1+B2+G1+G2 in feedstuffs     | 50                    | 0-1,000 | 21              |



### Aflatoxin regulations and impact on trade

- Codex standards are advisory
- National standards vary widely depending largely on the level of economic development and the susceptibility of a nation's crops to contamination (stringent based on the "precautionary" principle)
- Regulations have significant economic consequences (lost trade, enforcement costs) mainly to developing countries



### Framework in aflatoxin control

- Aflatoxin contamination is a complex problem:
  - -Hard to solve by a single actor/discipline
  - -Requires multi-stakeholder actions
  - Need to focus on the cause rather than the symptoms
  - -No single answer (bag of tricks)
- Integrated and coordinated actions needed

### Abatement of aflatoxin problem: Prevention

- Resistant varieties
- Native beneficials (non-toxin producer strains)
- Improved agronomic practices
- Postharvest: drying to safe moisture levels (in starchy cereals <15% SMC), clean, dry storage



### Abatement of aflatoxin problem: Decontamination

Removal: cleaning, physical sorting (e.g. sifting broken kernels), chemical

binders





### Abatement of aflatoxin problem: Regulation

- Setting of regulatory limits (legislation)
- Enforcement:
  - Monitoring to ensure compliance with limits
  - -Taking appropriate enforcement action
- Providing guidance



### Summary of GAPs and GMPs for aflatoxin control (Codex, 2002)

| Stage                                     | Commodity                        | Hazard                                               | Control measure                                                                                                                                                     |
|-------------------------------------------|----------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Preharvest                                | Cereal grains, oil seeds, nuts   | Mold infestation with subsequent aflatoxin formation | <ul><li>Use resistant crop varieties</li><li>Use native beneficials</li><li>Insect control</li><li>Adequate irrigation</li><li>Proper agronomic practices</li></ul> |
| Harvesting                                | Cereal grains, oil seeds, nuts   | Increase in aflatoxin formation                      | <ul><li>Harvest at appropriate time</li><li>Rapidly dry to safe moisture level</li></ul>                                                                            |
| Postharvest storage                       | Cereal grains, oil seeds, nuts   | Increase and/or occurrence of mycotoxin              | -Protect stored product from moisture, insects                                                                                                                      |
|                                           |                                  |                                                      | -Store product on dry, clean surface.                                                                                                                               |
| Postharvest, processing and manufacturing | Cereal grains, oil seeds, nuts   | Aflatoxin carryover or contamination                 | -Test all ingredients added<br>-monitor processing/manufacturing<br>-Follow good manufacturing<br>practices                                                         |
| Animal feeding                            | Dairy, meat and poultry products | Transfer of mycotoxin to livestock products          | - Use good quality feed ingredients -Test products for aflatoxin                                                                                                    |

### What is PACA?

- PACA is an innovative consortium aiming at coordinating aflatoxin mitigation and management across health, agriculture and trade sectors in Africa.
- PACA aims to adapt proven solutions, and identify new ones, that will work for African situation.



### PACA Comprehensive Program

#### Food Security | Trade | Health

Policy, standards and regulations

Testing (sampling; diagnostics)

Pre-harvest including beneficial fungi

Post-harvest drying, storage, handling

Market
development:
structured
demand,
alternative uses

Consumption

Training, communication, and capacity strengthening

Economic Assessments

Food Security Assessments Health Assessments

#### Genesis of PACA

- BMGF recognized need for aflatoxin control beginning in 2010 with WFP
- Opportunity to integrate action across Agriculture, Trade and Health
- Create Africa-based, Africa-led approach to aflatoxin control
- Bring to scale aflatoxin control technologies while building system of coordination



### **PACA** Timeline

| Date and Location                                      | Event                                                                     |
|--------------------------------------------------------|---------------------------------------------------------------------------|
| 23 March 2011, Yaoundé,<br>Cameroon                    | CAADP PP, asked AUC to explore establishment of PACA                      |
| 3-4 October 2011, Nairobi,<br>Kenya                    | PACA organizational planning meeting under the auspices of AUC            |
| 1-2 March 2012, Maputo                                 | PACA Interim Steering Committee Meeting                                   |
| 25-27 June 2012, Ibadan,<br>Nigeria                    | PACA Interim Steering Committee Meeting                                   |
| 30 October – 1 November 2012,<br>Addis Ababa, Ethiopia | PACA Launch and Steering Committee Inauguration                           |
| 10-12 April 2013, Dar Es Salam                         | PACA Strategy Development Stakeholders'<br>Consultation Workshop          |
| June 2013                                              | Review of PACA Strategy document by Secretariat and strategy participants |

### PACA Strategic Thematic Areas

- 1. Research and technology for control of aflatoxins
- 2. Legislation, policies, and standards in the management of aflatoxins
- 3. Growing commerce and trade while protecting lives from aflatoxins
- Enhancing capacity for effective aflatoxin prevention and control
- 5. Public awareness, advocacy and communication



### Conclusion

- Aflatoxin is an unavoidable as natural toxicant but options are available to manage it successfully
- Aflatoxin is a complex problem that can be addressed through integrated measures and coordinated actions
- The competitiveness of the African livestock industry is at stake unless the aflatoxin problem is addressed proactively

### Contact us

### www.aflatoxinpartnership.org

#### **Email:**

amareayalew@yahoo.com wintas@africa-union.org chungaw@frica-union.org



#### **AFRICAN UNION UNION AFRICAINE**

**African Union Common Repository** 

http://archives.au.int

Agriculture and Food Security

Partnership for Aflatoxin Control in Africa (PACA) collection

26/06/2013

#### Aflatoxins: Impact on Livestock Trade -

Ayalew, Amare

http://archives.au.int/handle/123456789/5503

Downloaded from African Union Common Repository